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1 Introduction 

Metallic dampers are energy-dissipating devices that dissipate through the mechanism of metal yield. In 
the last few decades, metallic dampers have received considerable attention in the field of earthquake 
engineering due to their stable hysteresis, long-term reliability, easy installation and replacement, and 
relative insensitivity to the environment. During moderate to severe earthquakes, the energy is concentrated 
in these dampers, and these dampers dissipate this energy through the yielding of metal. X-shaped added 
damping and stiffening device (X-ADAS) is the most commonly used metallic damper, which yields under 
flexure. Under shear loading at one end of the damper, these plates experience double curvature bending, 
and their tapered X-shape ensures uniform bending stress throughout the height of the plate. Similarly, the 
shear plate and shear link are the commonly used shear damper that yields under shear when experiencing 
in-plane shear loading. Shear dampers show more considerable initial stiffness and resistance than flexure-
yielding dampers, but their hysteresis is less stable. In order to utilize the merits of both types of metallic 
dampers, new combinations of both have been proposed in the past [1-2].  
The present study is focused on the numerical simulation of the integrated metallic plate dampers using the 
FEM-based software ABAQUS. The numerical results obtained are verified from the experimental data 
from the previously conducted tests on the Integrated metallic plate dampers (IMPDs) [3]. A theoretical 
formulation is also developed and verified for the IMPD subjected to a moment in addition to the moment 
at the free end. 

2 Integrated Metallic Plate Dampers: Theoretical calculations 
Integrated metallic dampers integrate flexure and shear-yielding components in a single damper unit. In the 
present study, two configurations of the IMPDs are considered. Both configurations utilize a square shear 
plate as a shear-yielding component. The number of X-ADAS plates is varied in the configuration as two 
and four and are placed on either end of a square shear plate.  

 
Figure 1. Formulations for shear component. 

Fig. 1 shows the shear plate subjected to the moment and shear load at the free end. The stress generated 
due to small displacements with the plane section assumption is also expressed, where σ□ and τ□□ are the 
normal and shear stress. σ□ and Ф are the major principal stress and angle of major principal stress with 
the X axis. The values of principal stress can be calculated as follows: 
□□□□ = □□ + □□2 ± □□□□ − □□2 □□ + □□□□   ;  □□ = 0                                                                                                                         (1) 

Following the distortional strain energy theory, the equivalent stress can be written as follows: 

□□ = □12 [(□□ − □□)□ + (□□)□ + (□□)□]    
□□ = □□□□□ + 3□□□□ □                                                                                                                                                                  (2)  
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The maximum value of bending and shear stress at y distance can be calculated as follows: 

□□ = □(□)□  ;  □ = □□□□□6  ; 
 □□ = 6□□□□ □ + □□□ ℎ′□

□□□□□  ;  □□□ = □□□□□□□ 

□□ = □□□□□□□□
36(□ + ℎ□)□

□□□ + 3                                                                                                                                                   (3) 

Assuming the uniform yielding of shear plate edges along the different heights, the yield strength of the 
shear plate can be calculated as follows: 

□□□ = □□□□□□
□36 □□ + ℎ′□□ □□ + 3

  ;   □ = ℎ 2□                                                                                                                                 (4) 

During relative motion between the upper and lower plates of the metallic X-Adas plate, it undergoes double 
curvature bending, resembling a fixed-fixed beam settled at one end (Fig. 2). If the moment generated on 
both the fixed ends is M, the corresponding reaction in the horizontal direction (Shear) can be calculated 
as: 

 
Figure 2. Formulations for flexure component. 

P = 2Mh                                                                                                                                                                           (5) 

where, h is the height of the plate. By the theory of simple bending, the bending equation can be written as: 

M = f□ bt□6                                                                                                                                                                      (6) 

From the equation (5) and (6), yield parameters for the plate subjected to double curvature bending can be 
represented as follows:  

P□ = n. f□ bt□3h                                                                                                                                                                 (7)  
K = n 12EIh□                                                                                                                                                                     (8) 

K = 12Eh□
b□□□t□

12 = Eb□□□t□
h□  ;   ;  b□□□  = b2                                                                                                             (9) 

Δ□ = P□K = 2h□f□3Et□                                                                                                                                                         (10) 

Where, P□ Δ□, and K represent the yield strength and displacement for the X-ADAS plate. Notations b, t, 
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and h represent the width, thickness, and height of the damper. n is the number of flexure plates. The 
resultant load resisted by the combined damper is the algebraic sum of the load resisted by each component. 
Since both shear and flexure plates have different yielding strengths and stiffness, simultaneous yielding of 
both components may not be possible. Thus, Assuming the elastic-perfectly plastic behavior of both the 
components, the overall load-displacement behavior of the combined damper can be assumed as trilinear, 
having three threshold boundaries where both flexural and shear components remain elastic in the first part. 
The yielding of the shear plate can be observed in the second part, and in the third part, the yielding of both 
shear and flexural plates and buckling of the shear plate can be observed.  

3 Data collection 

3.1 Hysteretic behavior and Failure mechanism 

Fig. 3 and Fig. 4 show the hysteretic behavior of the IMPD-A dampers. Fig. 3 indicates that IMPD-A1 
consists of two ADAS plates with a central square shear plate, whereas IMPD-A2 comprises four ADAS 
plates. The hysteresis curve shows that the damper IMPD-A1 and IMPD-A2 exhibit elastic behavior till 
2.75% drift. 

 
 

Figure 3. Failure mechanism and hysteretic behavior of IMPD-A1 

IMPD-A1 and IMPD-A2 show maximum resistance of 54.54 kN and 73.388 kN, respectively. After the 
initiation of out-of-plane buckling of the square shear plate, a drop in the hysteresis curve is observed. The 
increasing branch in IMPD-A1 after 15 % drift is due to the collision of the broken ADAS plates together. 
The flexure component in IMPD-A1 and A2 undergoes double curvature bending, but one of the ADAS 
plates in IMPD-A1 experiences early failure due to stress concentration. Compared to IMPD-A1, the shear 
component in IMPD-A2 shows relatively improved behavior in terms of diagonal tension yielding and 
compression buckling. 

 
 

Figure 4. Failure mechanism and hysteretic behavior of IMPD-A2 
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4 Numerical Modeling 

An analytical study has been conducted to predict the cyclic behavior of the IMPD samples using finite 
element analysis software ABAQUS. Quadrilateral four-node double-curved shell (S4R) elements have 
been used to model all the components. To consider the effect of loading assembly, the whole assembly was 
modeled using the S4R element. The connection between the loading assembly and damper is not modeled 
and is assumed to be rigidly connected. The material properties of the damper components have been 
assigned as per the experimental study. The initial imperfection of the damper plates has been incorporated 
before the testing using linear perturbation. The bottom plate has been assumed to be fixed, and the loading 
has been applied to the upper loading assembly. The effect of heat has not been considered, and the 
connection between the members is assumed to be rigid. A finite element mesh has been generated by 
seeding the edges. Shell elements (S4R) of 10mm size have been used to mesh the entire model using free 
mesh using the medial axis theorem.  

4.1 Detailed Modelling: 

Part: A 3D deformable shell element (S4R) is used to design the damper. Fig. 5 shows the dimensions of 
the flexure and shear components. The height and end widths of the ADAS plates are kept at 273 mm, and 
a reduced section of 40 mm is kept at the center. A square plate of 273 mm x 273 mm is used as a shear 
component. The dimensions of the bottom and upper base plate are maintained as 655 mm x 375 mm x 
20mm. The upper loading beam and rigid bracket (loading beam assembly) are also designed as the 
experimental test.  

  
(a) Flexure component (ADAS) (b) Shear component (Shear Plate) 

 
 

(c) Base Plate (d) Loading beam assembly 

Figure 5. Part module of Damper assembly 

Material and section assigned: Elastic properties are assigned to the base plates and loading assembly. 
Fig. 6 &7 show the material properties assigned to the shear and flexure components. Similar elastic 
properties are assigned to both components. The elastic modulus and Poisson’s ratio for these components 
are assigned as 1.8 x105 and 0.3, respectively. Plastic properties of the material are provided using combined 
hardening, and the calculated parameters for the material are assigned. The thickness of the flexure 
components is taken as 8 mm as per the experimental program; similarly, the thickness of the shear plates 
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is kept at 5 mm (Fig. 8). 

Figure 6. Material assigned to the flexure component. 

 

 
Figure 7. Material assigned to the shear component. 

 

 
Figure 8. Sections assigned to the flexure and shear components. 

Assembly: All the components are placed at their appropriate locations, and the final assembly can be seen 
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in Fig. 9. The whole assembly is assumed to be connected rigidly and is made a single unit using the merge 
instances icon. 

 
Figure 9. Final assembly of the Damper testing 

Interaction, loading and Mesh: The bottom face of the base plate is coupled to a reference point just 
below the plate face and the fixed. The loading is applied through the rigid bracket provided at the top of 
the loading beam assembly. The whole part is meshed with a free meshing technique using the medial axis 
algorithm available in the Abaqus. The mesh size is kept at 10 mm (Fig. 10). 

 
Figure 10. Meshing of the whole setup 

Initial Imperfection: The initial imperfections in the shear plates available in the shear plate before the 
testing are simulated using the linear perturbation option in the step icon of the ABAQUS. A total of 15 
modes of the dampers are monitored, and the desired imperfections are incorporated into the damper (Fig. 
11). 
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Figure 11. Consideration of the initial imperfection of the damper components 

5 Comparison of numerical and experimental results 

The results obtained from the numerical modeling are verified with the experimental results.  

 
Figure 12a. Comparison: Deformation behavior of numerical and experimental model 
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Figure 12b. Comparison: hysteretic behavior of numerical and experimental results. 

Fig. 12 shows that both results are in good agreement except after the 15 % drift, after which broken ADAS 
plate counterparts collide. Additionally, the area enclosed by the numerical results are slightly higher than 
the experimental results. That may be due to the slippage effect in the bolted connection between the loading 
beam assembly and damper, which is not explicitly designed in the present modeling. 

6 Limitations and future scope 
As discussed in the previous section, despite a good match, there are some deviations due to setup 
limitations and connections. The imperfection is modeled in the present study, but the bolted connections 
need to be modeled. Early failure due to crack also needs to be incorporated to get a perfect match. Moreover, 
the other damper IMPD-A2 with four ADAS plates also needs to be modelled and simulated.  
As a future scope, both configurations of the dampers will be studied under pure shear cyclic loading. They 
will be assigned to a moment-resisting RC frame to study the behavior of the RC frame under both types 
of dampers.  

7 Lab Visit and Practical Exposure 
During my internship, I had the opportunity to visit the state-of-the-art laboratory and actively work 
alongside the research team and colleagues. The enriching experience offered hands-on exposure to 
advanced testing setups and instrumentation techniques. 
The lab houses an impressive setup for testing Concrete-Filled Tubes (CFTs). I observed the meticulous 
preparation process, where the team independently handled all aspects of the setup. This included welding, 
cutting, grinding, and all instrumentation. The use of heavy machinery, such as cranes, to move large 
components further highlighted the technical expertise and self-sufficiency of the team. 
In addition to the CFT testing setup, I explored the ongoing research projects of other PhD students. Their 
work focuses on resilient structures, employing innovative materials such as higher-strength reinforcement 
steel bars and Fiber-Reinforced Polymers (FRPs). This exposure broadened my understanding of cutting-
edge techniques and materials used in structural engineering. 
The collaborative environment in the lab, combined with the opportunity to observe and discuss these 
projects, significantly enhanced my technical knowledge and practical skills. It was inspiring to see how 
the team integrates theoretical knowledge with hands-on experimentation to advance the field of structural 
engineering. 
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8 Summary and Future Collaboration: 
Work Done: Numerical modeling of one of the integrated metallic dampers with combined yielding 
mechanism IMPD-A1 is completed in the limited time span. The modeling of another integrated damper 
with four ADAS plates is in progress and is supposed to be completed by the end of the internship period.  
Work to be Done: The Numerical Simulation of the IMPD-A2 damper needs to be completed and verified 
with the experimental results as a future scope. Additionally, the cyclic performance of these dampers under 
pure shear loading needs to be calculated, and the obtained results are supposed to be utilized in the 
calculation of the cyclic performance of RC frames mounted with these dampers. 
Short-term goals: To complete the remaining work and convert the work into a publication in a well-
established journal. 
Long-term goals: To continue future collaborations with Prof. Cai and IROAST and explore the various 
aspects of the Structural dynamics. 
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Welcome to the Pulsar Astronomy! 
What are pulsars? 
 
    Pulsars are a special type of neutron star. Neutron stars are incredibly dense remnants formed 
when a massive star (typically around 1-3 solar masses) undergoes a supernova explosion. This 
explosion causes the core of the star to collapse, compressing all of its material into a tiny, dense 
"carcass" that’s only about 10-15 km in diameter, roughly the size of a small city. This intense 
density results in a star supported not by normal gas pressure, but by neutron degeneracy pressure 
— a quantum mechanical effect that prevents neutrons from being forced into the same state. 
 
 

 
                 Credit: singularityhub.com 
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 Discovery of pulsars 
 

 The first pulsar was discovered in 1967 by ‘Jocelyn Bell Burnell’ (a PhD in radio astronomy at 
Cambridge University) and her professor ‘Antony Hewish’. This was a groundbreaking discovery 
that opened the up the new ways to explore astrophysics. 

 Bell noticed a small strange scruff in the data. They initially thought it might be a signal from 
aliens, but it was an evidence of pulsar which is separated by 1.33 sec from same position in the 
sky. 

 Second pulsar was discovered in the Crab Nebula with a period of 33 ms confirmed that it was 
rotating neutron star. At present, nearly 3000 known millisecond pulsars are there. 

 
                              Prof.Antony Hewish 

          
              Credit:www.bigear.org             Credit: Wikipedia 
 
 

 Importance of pulsars as comic lighthouses: 
 

 Pulsars act as natural laboratories for extreme physics.  
 Pulsars often exist in extremely strong gravitational fields which help researchers test aspects of 

Einstein's theory of General Relativity.  
 For example, some pulsars are in binary systems with other stars or black holes, allowing scientists 

to observe the effects of intense gravitational interactions. 
 Also the arrival time of pulses will hint the presence of sensitive gravitational waves. 

 



 

 
 

 
 
 
 

 Light house model 
 The lighthouse model explains how we see pulsars as flashing or pulsing objects.  
 Imagine a lighthouse on Earth: as its light rotates, we only see the beam when it points directly at 

us.  
 A pulsar works similarly, sending out beams of radio waves in specific directions. We observe a 

"pulse" every time one of these beams points toward us. 
 

      
Credit: Adobe stock                  Credit: http://www.seasky.org/celestial-objects/pulsars.html 
 
 

 Characteristics of pulsars 
 Rotation Period: Normal pulsars have rotation periods ranging from 1.4 milliseconds to several 

seconds. The most typical pulsars rotate with periods of about 1 to 10 seconds. 
 Emission: Pulsars emit beams of electromagnetic radiation, primarily in the form of radio waves, 



 

 
 

but they can also emit X-rays and gamma rays. This emission is highly regular, appearing as 
pulses. 

 Neutron Stars: Pulsars are a type of neutron star, which means they are incredibly dense 
remnants of massive stars that have undergone supernova explosions. They are about 20 
kilometers in diameter but contain more mass than our Sun. 

 Magnetic Field: They possess strong magnetic fields, usually in the range of 10^8 to 10^15 gauss. 

 
 
 

 Classification of pulsars 
The two main classes of pulsars and they are treated differently in gravitational wave (GW) 
research: 
 
1. Canonical Pulsars:  

 These are young pulsars with typical rotation periods around 1 second and are often newly formed 
from recent supernova explosions.  

 Canonical pulsars aren’t ideal for precise timing (which is crucial for GW searches) because their 
rotation can be unstable over time.  

 They may also experience glitches—sudden spin-up events thought to happen when the inner 
neutron super fluid momentarily reconnects with the outer crust, causing a jump in spin rate. 
 
2. Millisecond Pulsars (MSPs):  

 MSPs are older pulsars with much faster rotation rates, typically spinning in milliseconds. They 
started as slower rotators but were recycled: they gained speed by accumulating material and 
angular momentum from a nearby binary companion.   

 MSPs are highly stable in their rotation, making them reliable for long-term timing. This stability 
makes them excellent candidates for detecting gravitational waves since they don’t experience the 
unpredictable spin changes seen in younger pulsars.  
 

 Formation of pulsars 
When a massive star collapses, if its core is between about 1.4 and 3 solar masses, it can form a 
neutron star. During the collapse of a massive star's core, gravity pulls the material inward intensely. 
As the core shrinks and density rises, neutron degeneracy pressure kicks in, countering the inward 
pull of gravity. If the core's mass is within the neutron star range (1.4 - 3 solar masses), this pressure 
halts the collapse, forming a neutron star. However, this rapid core collapse triggers a rebound 
effect in the outer layers, causing the star's outer layers to violently explode outward in a supernova 



 

 
 

explosion. 
 

         
 
Neutron degeneracy pressure: 
Neutron Degeneracy Pressure is a quantum mechanical force that arises when neutrons are packed 
extremely closely, as in the core of a collapsing massive star. This pressure occurs due to the Pauli 
Exclusion Principle, which states that no two neutrons (or other fermions like electrons) can 
occupy the same quantum state. When neutrons are forced into very close proximity, they resist 
further compression, creating a pressure that acts against gravitational collapse. 
 
 

 InterStellar Medium(ISM) effects on pulsars 
 
1. Dipersion: The pulses from a pulsar represent its rotation, and as these radio waves travel 
through the interstellar medium, which contains free electrons (plasma), they experience 
dispersion. This effect causes lower frequency pulses to arrive later than higher frequency ones, 
resulting in a diagonal shift in the frequency versus phase plot. Analyzing this data is essential for 
understanding the pulsar's characteristics and the influence of the interstellar medium  
 
2. Pulse broadning: When waves scatter, some of them travel longer distances because they are 
bent or refracted by irregularities in the ISM. These bent waves arrive later than direct waves, 
causing a “tail” effect in the pulse signal. This pulse broadening looks like a stretched or smeared-
out pulse and depends strongly on frequency (generally proportional to ν^-4), with lower 
frequencies being affected more.  
The broadening decreases the overall strength of the pulse signal and can reduce the precision of 
timing measurements, since it adds noise or blurring to the arrival times. So, the ISM can cause 
multiple issues for pulsar signals, it not only delays lower frequencies (dispersion) but also causes 
fluctuations in signal strength (scintillation) and stretches the pulse due to multipath scattering.  
 
3. Scintillation: Inhomogeneities in the turbulent ISM lead to diffractive and refractive 
scintillation, which cause variations in the flux density of the pulsar signal, similar to how stars 
appear to twinkle due to the Earth’s atmosphere. 
Diffractive Scintillations: Occur over timescales of minutes to hours and can involve radio 
bandwidths ranging from kilohertz to hundreds of megahertz, resulting in significant fluctuations 
in flux density (more than an order of magnitude). 
Refractive Scintillations: Generally produce smaller amplitude changes (less than a factor of 2) 
and occur over longer timescales, such as weeks.  
 
 



 

 
 

 Reason: 
1. The ISM consists of free charged electron density forming plasma. It possess a refractive    
  index which determines how radio waves pass through it. Mathematically it can be expressed- 

 
       where, νp= plasma frequency, ν= frequency of radio waves.   
  Here plasma frequency depends on density of electrons in the ISM. Here the refractive index   
  of ISM is less than 1 which affects the propagation of radio waves passing. 
  
2. Plasma frequency is the threshold frequency below which radio waves cannot travel through  
  plasma. Mathematically expressed as- 

                 = approx. 8.97kHz (constant multiplier). 
  where, e = electron charge, ne= 0.03 cm-3 = electron number density in per cm cube, me= 
  mass of electron. So we get plasma frequency around 1.5kHz.  
                                                                                                         
3. Hence, If the radio frequency is lower than plasma frequency then waves can’t propagate  
  through ISM. However, for most radio frequencies used in observations the radio frequency      
  would be greater, so waves can travel through it. 
   
Why lower frequencies slower down? 
Since refractive index depends on νp/ν the lower frequency waves(closer to plasma frequency) 
experience a greater reduction in group velocity. Mathematically it is expressed as 

 
Hence this reduction in velocity is more at lower frequencies, causing these lower frequencies 
travel slower and experience a delay compared to higher frequencies. 
 

 Pulse phase and broadening effect 
 

               
 
 

This is plot of Galactic center magnetar J1745-2900 shows the relative flux density of a pulsar 
signal on the y-axis versus the pulse phase on the x-axis,with each line representing observations 
at different frequencies. 
 
1. Pulse profile: Each peak in the plot represents a single pulse from the pulsar. The x-axis (pulse 

phase) indicates the progress through one full rotation of the pulsar, from 0 to 1.0 (or 0 to 360 



 

 
 

degrees in phase). 
2. Frequency dependence of pulse delay: We notice how the pulse shifts to the right (higher 

pulse phase) at lower frequencies. This is due to dispersion in the interstellar medium (ISM), 
which delays lower frequencies more than higher ones as they travel through the ionized gas 
and electrons in the ISM. At lower frequencies the range is wider because the scattering causes 
the pulse to spread more making it broadening. 

 
3. Relative flux density: The y-axis shows the strength of the pulse signal at each frequency. The 

peak shape indicates how the intensity of the pulse varies over one rotation of the pulsar. 
 
4. Dispersion smearing: At lower frequencies, you can see that the pulse profiles are slightly 

broader or “smeared.” This happens because dispersion effects cause a spread of arrival times 
across the pulse, especially at lower frequencies, which can lead to a more extended pulse 
profile. 

 
5. Aligning pulses with De-dispersion: In practical analysis, researchers use de-dispersion 

techniques to shift these pulses back to a common phase, aligning them to study the intrinsic 
pulse shape more accurately without the delay caused by the ISM.  

 
 
 
 

 Pulsar Timing Array(PTA) 
 

       

      
 

Pulsar timing is a powerful observational technique that utilizes pulsars—rapidly rotating neutron 
stars that emit beams of radio waves. 



 

 
 

  
1. Pulsar timing involves closely monitoring the arrival times of these radio pulses. By recording 

when each pulse arrives, astronomers can track the pulsar’s rotation very accurately over long 
periods (years to decades). 

 
2. Precision and Accuracy: This precise timing allows researchers to account for every rotation 

of the neutron star. This level of detail is critical because it helps in understanding the physical 
conditions inside neutron stars and how they behave over time. 

 
3. Although individual pulses may vary slightly due to random changes in the emission region, 

the average pulse shape over many rotations is stable and consistent, sometimes even for 
decades which is a unique "signature" for each pulsar, allowing us to measure each rotation 
precisely. 

  
4. Applications of PTA: Used to study the interior Physics of Neutron Stars, Detecting 

Gravitational Waves at low frequencies as it allows us to track the exact arrival times of radio 
pulses with high accuracy. 

 
 Pulsar Timing Array process 
 
1. Starting with Raw Data in the Time Domain: The raw data are indeed initially in the time domain, 
showing the signal as it arrives over time. 
 
2. Conversion to Frequency Domain using FFT: You convert the time-domain data to the frequency 
domain using a Fast Fourier Transform (FFT). This step helps reveal how the signal varies with 
frequency, which is essential for addressing dispersion. 
 
3. Observing the Dispersion Curve: lower frequencies experience more dispersion (they arrive 
later), while higher frequencies arrive sooner. In the dispersion curve resulting pulse phase shifts 
more for lower frequencies, causing a "spread-out" effect in the signal. 
 
4. Phase Correction through De-dispersion: There are two methods as follows- 
  Incoherent Dedispersion: Splits the signal into sub-bands, adjusts for delays individually, and 

then combines them. It's simpler but might not achieve the highest precision. 
  Coherent Dedispersion: Processes the entire signal as a whole single wave, applying a 

correction that accounts for all frequencies simultaneously. It's more complex and 
computationally intensive but typically offers greater accuracy. We use coherent dispersion. 

 
5. Exact Time of Arrival (TOA): Finally, by adding this time offset to a reference point (like the 
start of your observation), you calculate the Time of Arrival (TOA) for each pulse. This TOA tells 
you exactly when each pulse from the pulsar reaches Earth. 
 
6. Inverse Fourier Transform: After de-dispersion, apply the inverse Fourier Transform to bring 
the data back from the frequency domain to the time domain. Now, the pulses are "compressed" 
and aligned in time, resulting clearer peaks. 
 
7. Folding and Averaging: With the data back in the time domain, by folding or average over many 
pulses. This process gives a sharper, more stable pulse profile by reducing random noise. 
 
8. Multiplying by the Pulse Period: After obtaining a stable average pulse profile, we calculate the 



 

 
 

phase shift by comparing this profile with a template profile. Once we have the phase shift, we 
multiply it by the pulse period. This gives a time offset that helps us to align the observed profile 
accurately  with the expected profile. 
 
9. Convert TOA from Topocentric to Barycentric time: To make measurements consistent and 
independent of Earth’s motion, we adjust all TOAs to the Solar System Barycenter (SSB), a stable 
reference frame centered near the Sun. 

  Einstein Delay: Time dilation and gravitational redshift caused by the gravitational   
 influence of the Sun and other solar system bodies. 

  Shapiro Delay: Delay caused by the pulse passing through the gravitational field of the  
 Sun, making the signal take slightly longer to reach us. 

  Roemer Delay: The light travel time between Earth and the SSB, which varies as Earth  
 orbits the Sun. 

  Clock Corrections: Adjustments to sync the observatory's local time with global timing 
 standards. 

 
Timing equation –  
 

 
By applying these corrections, we can accurately pinpoint the exact moment a pulse left the pulsar. 
This high-precision timing model allows us to study the pulsar’s rotation and orbital characteristics, 
detect subtle changes in its behavior, and potentially observe gravitational wave effects. Accurate 
pulsar timing relies on accounting for every influence on the TOA, from Earth’s position to the 
interstellar medium, and even the pulsar’s companion star if it has one. 
 

10. Template Comparison for Shape Verification: Finally, comparing with the template we get the 
accuracy and stability of the pulse shape. If there’s any discrepancy, we can adjust and verify until 
the observed pulse shape aligns well with the template. 
 

11.  Timing residual: This is the difference between corrected TOA and predicted TOA. Predicted 
TOA is when we use pulsar’s known spin frequency and slowdown rate to predict each pulse 
should arrive at SSB. These residuals serves as indicators of uncertainties or potential opening of 
new insights. Minimizing them is key to achieve high precision pulsar timing. 
 

 Various sources of timing residuals  
 

 



 

 
 

 
1. Top Panel: Timing residuals close to zero indicate a good model fit with minimal uncertainties 
in TOA predictions—meaning the model accurately represents the pulsar's timing behavior. 
2. Second Panel: The increasing residuals indicate a 1% error in the spin-down rate. Since the 
pulsar's rotation slows slightly over time, this error accumulates, causing TOAs to appear 
increasingly delayed, forming a parabolic curve. 
3. Third Panel: Incorrect Right Ascension (RA) and Declination (Dec) positions show up as 
sinusoidal waveforms in the residuals, as Earth’s orbit changes the line-of-sight to the pulsar. RA 
and Dec errors result in two different waveforms due to their directional effects on timing. 
4. Fourth Panel: Proper motion error of the pulsar—due to assuming an incorrect rate of movement 
across the sky—creates a mix of linear and sinusoidal residuals. This is because the pulsar appears 
to "drift" over time, altering the timing model in a more complex way. 
5. Bottom Panel: The pattern in the Mars-orbiting example is due to an assumed periodic motion 
of the pulsar around Mars, which would create regular, cyclic timing deviations in the residuals.  
 

 Significance of PTA 
 
1. Purpose: PTAs detect nanohertz gravitational waves (GWs) by observing correlated timing 
residuals in millisecond pulsars (MSPs). 
 
2. Key GW Sources: Supermassive black hole binaries (SMBHBs) with masses –, merging after 
galaxy collisions. Distant systems could form a “stochastic background” of GWs. 
 
3. Detection Mechanism: GWs introduce spatially and temporally correlated systematic in MSP 
timing residuals. Achieving tens-of-nanosecond precision enables detection at nanohertz 
frequencies. 
 
4. Global Collaboration: Three PTA experiments—NANOGrav (North America), Parkes PTA 
(Australia), and European PTA—collaborate as the International Pulsar Timing Array (IPTA). 
 
5. Scientific Progress: Current PTA results challenge models of galaxy mergers and signal 
significant advancements in sensitivity. 
 
6. Future Outlook: With ongoing improvements in timing precision and new MSP discoveries, 
direct GW detection via PTAs is increasingly possible, potentially within the next five years.  
 
(05/11/2024-12/11/2024) 
1. Task: Understand pulsar parameters: pick up some physically-important parameters. 
Make plots within the website: various combination of parameters and find correlation 
between parameters. Download pulsar data from the catalog site. Make plots with 
programming: reproduce the plots. 
 
 

  Database: Australia Telescope National Facility (ATNF) Pulsar catalogue. 
 This is a comprehensive database of all published pulsars. Below is the page of the website. 

  Predefined selected pulsar parameters: 
 From the catalogue database we selected important parameters required for our project. 



 

 
 

. 
 
 1. P0 (period of the pulsar) -          
   pulsar period is the time taken by pulsar to complete one full rotation, typically measured in  
   seconds or milliseconds. 
 
 2. P1 (Time derivative of period) –  
   It's a dimensionless parameter that indicates how the period of the pulsar is changing over  
   time. 
 
 3. DM (Dispersive Measure)–  
   It is the quantity that represents the integrated column density of free electrons along the line 
   of sight from pulsar to us is called DM. It is in pc per cubic centimeter. 
 
 4. W50 (width of pulse at 50% of peak or pulse width) –  

  It's measured in milliseconds (ms) and provides an indication of the pulse's duration, pulse  
  width. 

 
 

  Generated all the plots of different combinations within the website. By selecting 
parameters as shown in the below fig. 
 
 
 
 



 

 
 

Plot-1   P0 versus P1 

 
 
 
 
 

Plot-2   P1 versus DM 

 
 
 



 

 
 

Plot-3   P1 versus W50 

 
 
 
 
 

Plot-4   W50 versus P0 

 
 



 

 
 

 
 

 Reproduced the plots using python programming. 
 

Plot 1-   log(P0) versus log( P1) 

 
 

Plot-2   log(DM) versus log(P1) 

 
 

 
 
 
 
 
 
 



 

 
 

Plot-3   log(P1) versus log(W50) 

 
 

 
 
 
 
 

Plot 4 -  log(W50) versus log(P0) 

 
 

【12/11/24】to 【26/11/24】. 
 

Tasks:Learn machine learning methods for clustering to classify objects according to the 
parameter values 



 

 
 

 
Application of Machine Learning for Pulsar population 

 
Introduction to Machine Learning(ML): 
    In today's data-driven world, every aspect of our lives is digitally recorded and interconnected. 
Effective data management tools and techniques are essential for extracting valuable insights and 
knowledge promptly. Artificial Intelligence (AI), particularly Machine Learning (ML), has 
significantly advanced in recent years, enhancing data analysis and enabling intelligent application 
functionality. 
    Machine Learning (ML) is a subset of artificial intelligence that enables systems to learn and 
improve from experience without being explicitly programmed. By analyzing patterns in data, ML 
algorithms can make predictions, identify trends, and drive decision-making processes in various 
applications. 

 
Project focused learning: 

 
Our project goal is to perform clustering, which requires approaching the data using unsupervised 
learning techniques. Our data type is numerical and non-uniformly distributed density of data 
points. So appropriate would be DBSCAN clustering. But we shall compare it with other clustering 
technique to confirm the appropriate method. 
 

 Unsupervised learning: Clustering method 
1.Unsupervised learning involves training algorithms on data without predefined labels. The goal 
is to identify patterns and group similar data points together based on their characteristics. 
 

 
 
 
 
 



 

 
 

 
 Appropriate Clustering technique 
 

2. DBSCAN Clustering 
(Density-Based Spatial Clustering of Applications with Noise) 

 
It is a popular density-based clustering algorithm widely used in data mining and machine learning. 
It separates high-density clusters from low-density noise, making it robust to outliers and able to 
find clusters of various shapes and sizes without needing to specify the number of clusters in 
advance. Unlike K-Means, which is faster, DBSCAN excels at finding high-density regions and 
handling noise in the data. 
 
1. Choose hyper- parameters: 
Epsilon (ε): Defines the radius of the neighborhood around a point. 
Minpoints: Minimum number of points required to form a dense region. 
 
2. Classify Points: 
Core Points: Points with at least Minpoints within ε. 
Border Points: Points within ε of a core point but with fewer than Minpoints within ε. 
Noise Points: Points that are neither core nor border points. 

 
 

3. Form Clusters: 
For each core point, form a cluster including all its reachable points (directly or indirectly within 
ε).Border points are assigned to the nearest core point’s cluster.Noise points remain unassigned. 
 
4. Repeat: 
Continue until all points are either assigned to a cluster or marked as noise. 
 

 Key points of DBSCAN clustering: 
1. Assumption: Does not assume any specific shape for clusters. 
2. Method: Density-based, identifies clusters based on the density of data points. 
3. Parameter: Uses epsilon (ε) and minimum points (minPts) to define clusters. 
4. Outliers: Can handle outliers by marking them as noise. 
5. Best for: Clusters of arbitrary shapes and datasets with noise. 
 

 Cluster validation: 
 
1.  Silhouette Score:  
 The Silhouette Score measures how similar an object is to its own cluster compared to other 
clusters. It is a measure of cluster cohesion and separation. 
 



 

 
 

Calculation: For each point: 
 Cohesion (a): Calculate the average distance between the point and all other points in the same 

cluster. 
 Separation (b): Calculate the average distance between the point and all points in the nearest 

neighboring cluster. 
 Silhouette Coefficient (s): For each point,  

 
Where, a: The mean distance between a point and all other points in the same cluster (intra-cluster 
distance). 
b: The mean distance between a point and all points in the nearest cluster (inter-cluster distance). 
The Silhouette Score for the entire dataset is the mean of the Silhouette Coefficients of all points. 
 
 

 High Silhouette Score: 
1. Indicates that data points are well-clustered. 
2. Data points are closer to their own cluster center and far from other clusters. 
3. Values close to 1 suggest well-separated clusters. 
 

 Low or Negative Silhouette Score: 
1. Indicates that data points might be assigned to the wrong clusters. 
2. Values close to 0 suggest overlapping clusters. 
3. Negative values indicate points may be in the wrong cluster. 
 
2. Davies-Bouldin Index (DBI): 
The Davies-Bouldin Index is a metric that evaluates the average similarity ratio of each cluster 
with its most similar cluster. It measures cluster dispersion and separation. 
 
 
 
Calculation: For each cluster: 

 Cluster Dispersion (S): Calculate the average distance between each point in the cluster and  
cluster centroid.                                                

 Cluster Similarity (Rij): For each pair of clusters (i, j), calculate the similarity  
                                       Rij = Si+Sj 
                                            Dij 
Where,  
 Si: Cluster dispersion of cluster i. 
 Sj: Cluster dispersion of cluster j. 
 Dij: Distance between the centroids of clusters i and j. 
 
The DB index is average of the maximum R values for each.      

 
 where, k: Total number of clusters and Rij: Cluster similarity between clusters i and j. 
 

 Range: The DBI values range from 0 to ∞. 
 Lower values: Indicate better clustering, with more distinct and compact clusters. 



 

 
 

 Higher values: Indicate poorer clustering, with less distinct and more dispersed clusters. 
 
These metrics help assess the quality of clustering results by evaluating the cohesion and 
separation of clusters.  
 
 
【26/11/24】 to 【17/12/24】 

 
Tasks: Apply clustering methods to pulsar population data: find groups in pulsar population 
and make a physical interpretation if possible 
 
I applied DBSCAN clustering technique to our dataset. Our dataset is of numerical type with non-
uniform distribution of data points. Hence DBSCAN is a density based method which is applied 
for such kind of data, also it will handles the noise/outliers which doesn’t belong to any cluster. 
On the other hand GMM is a probabilistic likelihood based clustering which will also handles the 
outliers but it won’t differentiate those outliers as separate cluster as in the case of DBSCAN. I 
applied silhouette score and Davies Bouldin score to validate the models which best suitable for 
our dataset. The reason for not choosing K-Means clustering is, it assumes the dataset to be in 
spherical shape which is not the characteristics of our dataset and Hierarchial clustering is 
computational expensive. 
 

 DBSCAN algorithm workflow: 
 
1. Import libraries and load the data file.  
2. Preprocessing the data by dropping NAN or missing values.  
3. Encoding & extracting the features of raw data without scaling. Also generate k-plot to choose  
  epsilon value. Fit the DBSCAN model. 
4. Apply DBSCAN clustering using parameters eps & min_points. 
5. Identify and print noise data points. 
6. Mapping colors and shapes for encoded categories. 
7. Plot the results with log scale on both axes. 
8. Display the 2D scatter plot. 
9. Validation process using Silhouette and Davies-Bouldin scores. Choose best scores. 
10.Repeat the process fine tuning the parameters epsilon and adjust minimum sample points to  
  get good quality of clustering patterns. 
 

 DBSCAN K-plots: 
k-distance plots represents the sorted data points by their distance to the k-th nearest neighbor.  
 
What the k-Distance Plot Shows? 
X-axis: This is just the order of your data points. Think of it as a list of points from left to right. 
Y-axis: This shows how far away each data point's 3rd or 4th or 5th nearest neighbor is (or whichever 
"k" we can chose). 
 
Why It's Useful? 
The plot helps you find the best "eps" (epsilon) value for DBSCAN clustering. 
 
How to Use It? 
Look for the 'Elbow': Find the point on the plot where the curve makes a sharp turn. This is where 
the distance to the 3rd nearest neighbor starts to increase quickly. 
Choose Eps: The Y-value at this elbow is your "eps". 



 

 
 

 Generated 2D K-plots and their epsilon values- 
 
 
 

Fig-1 

 
eps = 0.5198 

 
 

 
Fig-2 

 
K-distance plot for log(DM) versus log(P1) 

 
eps = 0.426 

 



 

 
 

 
 

Fig-3 

 
eps = 0.438867 

 
 
 

Fig-4 

 
eps = 0.32 

 
 
 
 
 



 

 
 

 
 Generated DBSCAN 2D scatter plots. 

 
 

Fig-1 

 
noise points: 12 

 
Plot analysis: 

 Cluster-1 
1. Ranges between 10-3 to 10-1 in log(p0) and P1 approx from 10-22 to 10-18.. 
2. These are likely millisecond pulsars. 
3. Having short spin periods and low period derivatives due to binary spun-up.Due to less period  
  Derivative they remain stable. 

 Cluster-0 
1. Ranges between 10-1 to 101 in log(p0) and P1 approx from 10-18 to 10-12. . 
2. These are likely young or old with wide diversity of pulsars population distribution. 
3. Having moderate to large spin periods and includes high spin down rates due to high energy  
  loss due to presence of high energy pulsars (magnetars) in this cluster. 
4. They have strong magnetic field. 

 Noise: 12 noise points which doesn’t belong to any cluster.They might possess unique properties. 
 Cluster validation 

Silhouette score: 0.73111 and Davies-Bouldin index: 0.3114 
   1. The data points are well-matched to their own clusters. 
   2. Well-separated from other clusters, suggesting high-quality clustering.  
   3. Low Davies score represents, inter-cluster separation is high.  
    

 
 



 

 
 

Fig-2 

 
noise points: 11,. 

 
Plot analysis: 

 Cluster-1 
1. Ranges between 101 to approx 200 in log(DM) and log(P1) approx from 10-22 to 10-18.. 
2. These are likely millisecond pulsars. 
3. Lesser DM values indicate that these pulsars are located near to earth and in lower ISM 
  Density regions and lesser period derivative indicates they are stable candidates. 

 Cluster-0 
1. Ranges between 101 to 103 in log(DM) and log(P1) approx from 10-18 to 10-12. . 
2. These are likely young or old with wide diversity of pulsars population distribution. 
3. Having moderate to large spin periods and includes high spin down rates due to high energy  
  loss due to presence of high energy pulsars (magnetars) in this cluster. 
4. DM values are ranging from moderate to high indicates most pulsars are located in moderate  
  High ISM density regions. 

 Noise: 11 noise points which doesn’t belong to any cluster.They might possess unique properties. 
 Cluster validation 

   Silhouette score: 0.6993044, Davies-Bouldin score: 0.33600516 
   1. The data points are well-matched to their own clusters. 
   2. Well-separated from other clusters, suggesting high-quality clustering.  

3. Low Davies score represents, inter-cluster separation is high. 
 

 
 
 
 
 
 



 

 
 

 
Fig-3 

 
noise points: 15 

 
Plot analysis: 

 Cluster-1 
1. Ranges between 10-1 to approx 10+1 in log(W50) and log(P1) approx from 10-22 to 10-18.. 
2. An extremely small period derivatives tells that these are likely millisecond pulsars  
3. Lesser W50 values indicate that these pulsars experience less pulse broadening effect in lesser  
  ISM density regions or located nearer to earth. And lesser period derivative indicates these 
  pulsars are stable. 

 Cluster-0 
1. Ranges between 10+1 to approx 10+2 in log(W50) and log(P1) approx from 10-18 to 10-12.. 
2. These are likely young or old with wide diversity of pulsars population distribution. 
3. Moderate to high period derivative and high W50 values indicate high pulse broadening. 
4. This tells they are located in high dense regions of ISM or faraway where electron density is  
  more.   

 Noise: 15 noise points which doesn’t belong to any cluster.They might possess unique properties. 
 Cluster validation 

   Silhouette score: 0.7036218, Davies-Bouldin score: 0.337638567 
   1. The data points are well-matched to their own clusters. 
   2. Well-separated from other clusters, suggesting high-quality clustering.  

3. Low Davies score represents, inter-cluster separation is high. 
 

 
 
 
 
 



 

 
 

Fig-4 

     
noise points: 9 

 
Plot analysis: 
 

 Cluster-0 
1. Ranges between 10+1 to approx 200 in log(W50) and log(P0) approx from 10-3 to 10+1.. 
2. These are likely young or old(MSPs) with wide diversity of pulsars population distribution. 
3. Moderate to high period derivative and high W50 values indicate less to high pulse  
  broadening. 
4. This tells the pulsar population shows that they are located in less dense region of ISM to high 
  dense regions of ISM or faraway where electron density is more.  

 Cluster-1 
1. High W50 value and low P0 values indicates factors like beam geometry,emission altitude 
  Or magnetic inclination dominate over spin period in shaping pulse width. 
2. High pulse broadening at small P0 suggests that pulsar’s emission beam is wide due to large  
  Magnetic inclination or emissions originating from higher altitudes in magnetospheres. 

 Noise: 9 noise points which doesn’t belong to any cluster.They might possess unique properties. 
 Cluster validation 

   Silhouette score:0.6728116, Davies_Bouldin_index:0.38676487 
   1. The data points are well-matched to their own clusters. 
   2. Well-separated from other clusters, suggesting high-quality clustering.  

3. Low Davies score represents, inter-cluster separation is high. 
 

 Generated 3D K-plots and their epsilon values 
 
 
 
 



 

 
 

Fig-1 
3D k-plot for log(P0,),log(P1),log(DM) 

 

 
eps = 0.607 

 
 

Fig-2 
3D k-plot for log(P0,),log(P1),log(W50) 

 
 

eps = 0.54   
 
 
 
 
 
 
 
 
 
 



 

 
 

 
 Generated DBSCAN 3D scatter plots. 

 
 

Fig-1 
3D scatter plot of log(P0),log(P1),log(DM) 

 
noise points: 16, Silhouette score: 0.710455, Davies-Bouldin score: 0.348528950 

 
 

Plot analysis: 
1. There are two clusters 0 and 1. Cluster 0 consisting pink color circle data points and cluster 1 
  has yellow square data points. 
2. The values log(P0),log(P1),log(DM) of cluster 1 are smaller than the cluster 0. This indicates  
  short period, low period derivatives and lesser DM values. 
3. They are located in lesser inter stellar medium denser regions or nearer to earth. 
3. Likely the cluster 1 has millisecond pulsars which are very stable and suitable for research in 
  the gravitational waves. 
4. We observe an increasing trend in the values of log(P0),log(P1),log(DM).such as moderate to  
  high values of cluster 0 pulsar data points. 
5. The increase in the parameter values suggest that there are younger and older diverse pulsar 
  population. As we notice the cluster 0 data points towards right,it would suggest that pulsars 
  which are high energetic with strong magnetic field are located far away and high dense inter 
  stellar medium regions. Also these are less stable due to variations in the period derivative. 
  

 Noise: 16 noise points which doesn’t belong to any cluster.They might possess unique properties. 
 

 Cluster validation: 
Silhouette score: 0.710455, Davies-Bouldin score: 0.348528950. 
1. The data points are well-matched to their own clusters. 
2. Well-separated from other clusters, suggesting high-quality clustering.  
3. Low Davies score represents, inter-cluster separation is high. 

 
 
 
 

 



 

 
 

Fig-2 
3D scatter plot of log(P0),log(P1),log(W50) 

 
 

 
 

noise points: 11  
 
 
Plot analysis: 
1. There are two clusters 0 and 1. Cluster 0 consisting pink color circle data points and cluster 1 
  has yellow square data points. 
2. The values log(P0),log(P1),log(W50) of cluster 1 are smaller than the cluster 0. This indicates  
  short period, low period derivatives and lesser W50 values. 
3. They are located in lesser inter stellar medium denser regions or nearer to earth. Where the  
  pulse broadening effect is less. Hence, we get sharp pulse profile. 
3. Likely the cluster 1 has millisecond pulsars which are very stable and suitable for research in 
  the gravitational waves and testing relativity experiments. 
4. We observe an increasing trend in the values of log(P0),log(P1),log(W50).such as moderate to  
  high values of cluster 0 pulsar data points. 
5. The increase in the parameter values suggest that there are younger and older diverse pulsar 
  population. As we notice the cluster 0 data points towards right would suggest that pulsars 
  are high energetic with strong magnetic field are located far away and at high dense inter 
  stellar medium regions.  
6. Due to this denser regions, there would be pulse broadening effect on these pulse signals. It 
  would become difficult to receive narrow sharp pulse profile. 
 

 Noise: 11 noise points which doesn’t belong to any cluster.They might possess unique properties. 
 

 Cluster validation: 
Silhouette score: 0.68693808, Davies-Bouldin score: 0.55070258. 
1. The data points are well-matched to their own clusters. 
2. Well-separated from other clusters, suggesting high-quality clustering.  
3. Low Davies score represents, inter-cluster separation is high. 
 

 



 

 
 

 
 

 Generated 4D K-plot and their epsilon value. 
 
 

K-plot For log(P0,),log(P1),log(DM),log(W50) 
 

 
 

eps = 0.699 
 
 

 Generated DBSCAN 4D scatter plots. 
 

Fig-1 
4D scatter plot of log(P0),log(P1),log(DM),log(W50) 

 

 
noise points: 23 

 



 

 
 

Plot analysis: 
1. There are two clusters 0 and 1. Cluster 0 consisting blue color circle data points and cluster 1 
  has yellow circle data points. 
2. The values log(P0),log(P1),log(DM),log(W50) of cluster 1 are smaller than the cluster 0. This      
  indicates short period, low period derivatives. And lesser W50,DM values shows they are  
  located near the earth with low density ISM regions. 
3. If the distance is less then there would be less electron density which the pulse would be  
  affected by ISM resulting dispersion, pulse broadening. Hence, we get sharp pulse profile.  
4. Likely the cluster 1 has millisecond pulsars which are very stable and suitable for research in 
  the gravitational waves and testing relativity experiments. 
5. We observe an increasing trend in the values of log(P0),log(P1), log(DM),log(W50).such as  
  moderate to high values of cluster 0 pulsar data points. 
5. The increase in the parameter values suggest that there are younger and older diverse pulsar 
  population. As we notice the cluster 0 data points towards right would suggest that pulsars 
  are high energetic with strong magnetic field are located far away and at high dense inter 
  stellar medium regions.  
6. This results moderate to high pulse broadening effect on these pulse signals. Where the pulse  
  pass more electron density regions. It would become difficult to receive narrow sharp pulse  
  profile. 
 

 Noise: 23 noise points which doesn’t belong to any cluster. They might possess unique properties. 
 

 Cluster validation: 
Silhouette score: 0.694185769, Davies-Bouldin score: 0.3841697358 
1. The data points are well-matched to their own clusters. 
2. Well-separated from other clusters, suggesting high-quality clustering.  
3. Low Davies score represents, inter-cluster separation is high. 
 

 Future Aspects of P0,P1,W50,DM in pulsar studies.  
 

 Understanding Evolution: Continuous observations of  across a variety of pulsars can help refine 
pulsar evolutionary models (For example, how pulsars evolve from young, fast-spinning states to 
slower, older states.) 

 Gravitational Wave Detection: Millisecond pulsars (P0~ 1-10 ms) are used in pulsar timing arrays 
(PTAs) to detect nanohertz-frequency gravitational waves. 

 Millisecond Pulsar formation: Insights into accretion-induced spin-up of recycled pulsars in binary 
systems,providing more evidence about binary star evolution. 

 Magnetic Field Evolution: Using P1 to estimate the decay of the magnetic field over time and 
relate it to the pulsar's age. 

 Extreme Physics: Investigating pulsars with extremely high or low  values to study their unique 
mechanisms of energy loss or spin-up. 

 ISM Mapping: Pulsars act as probes to map the distribution of free electrons in the Milky Way and 
other galaxies, helping to build precise models of the interstellar medium (ISM). 

 Scattering Studies: Observing how  broadens with increasing DM can quantify scattering effects 
caused by the ISM,leading to improved models of pulse propagation. Also we can detect high 
redshift pulsars in distant galaxies. 

 Pulsar Timing Precision: Narrower  pulses improve timing precision, crucial for PTAs and 
detecting gravitational waves. 
 
 



 

 
 

 
 Machine Learning meets Pulsars: The future of Pulsar studies.  

 
Machine learning (ML) holds immense potential for future pulsar studies due to its ability to handle 
complex, high-dimensional data and uncover patterns that might not be apparent through 
traditional methods.  
 

 ML can distinguish real pulsars from artifacts with high accuracy, reducing the burden on manual 
inspection. 
 

 ML can help model the relationships between intrinsic properties and environmental factors, 
shedding light on how pulsars evolve in different ISM conditions. 
 

 ML can optimize pulsar selection for PTAs, identifying the most stable pulsars or improving data 
noise modeling, enhancing the sensitivity of gravitational wave searches. 
 

 Future telescopes like the Square Kilometre Array (SKA) will generate petabytes of data. ML 
models, especially deep learning algorithms (e.g., CNNs), can automate pulsar candidate detection 
from radio survey data, filtering noise and improving discovery rates. 
 

 Future research Plans 
 
Research Plan for PhD – Pulsar Timing Array Analysis with Machine Learning and AI for 
Gravitational Wave Detection. 
 

 Background 
 
The detection of gravitational waves (GWs) has revolutionized our understanding of the universe, 
providing insights into phenomena like black hole mergers and neutron star collisions. Pulsar 
Timing Arrays (PTAs) are an emerging observational tool to detect low-frequency GWs by 
monitoring the precise timing of millisecond pulsars. However, systematic errors, including 
irregularities in pulse arrival times and interstellar medium effects, remain significant challenges. 
 
Recent advancements in machine learning (ML) and artificial intelligence (AI) offer new 
possibilities for improving data analysis techniques. By leveraging these technologies, it is 
possible to address systematic errors and enhance the sensitivity of PTAs, enabling the detection 
of GWs with unprecedented precision. 
 

 Objectives 
 
The primary goal of this research is to develop novel ML-based methods to analyze pulsar timing 
data, reduce systematic errors, and enhance the accuracy of GW detection using PTAs. Specifically, 
the research will focus on: 
 
1. Reduction of Systematic Errors: Identify, model, and mitigate sources of systematic errors in 
pulsar timing measurements. 
 
2. Analysis of Pulsar Statistical Properties: Explore the intrinsic and extrinsic statistical behaviors 
of pulsar pulses to enhance timing models. 
 



 

 
 

3. Development of ML Frameworks: Innovate data analysis methods using ML and AI to extract 
faint GW signals embedded in noisy and complex datasets. 
 

 Research Methodology 
 
1. Data Collection and Preparation: 
 

 Utilize publicly available PTA datasets, such as ATNF, NANOGrav, EPTA, or PPTA. 
 Preprocess the data to remove noise and standardize formats for ML applications. 

 
2. Systematic Error Reduction: 
 

 Investigate and model sources of systematic errors, such as pulse profile evolution, interstellar 
scattering, and clock inaccuracies. 

 Use statistical tools like Bayesian inference and Principal Component Analysis (PCA) to identify 
error patterns. 

 Apply statistical techniques and ML algorithms (e.g., Random Forest, Gradient Boosting) to 
identify these patterns and isolate & correct these errors. 
 
3. Development of ML Algorithms: 
 

 Supervised Learning: Train models using labeled datasets to detect GW signals and refine timing 
precision. 

 Unsupervised Learning: Apply clustering techniques to identify hidden patterns in pulsar timing 
residuals. 

 Neural Networks: Utilize deep learning models (e.g., Convolutional Neural Networks, Recurrent 
Neural Networks) to enhance sensitivity to subtle GW signatures. 

 Explore transfer learning to adapt models trained on one dataset to another. 
 
4. Validation and Testing: 
 

 Validate the developed methods using synthetic datasets with known GW signals for model 
performance. 

 Test developed algorithms on real PTA datasets to measure improvements in timing precision and 
GW signal detection capabilities. 
 

 Expected Outcomes 
 
1. A novel ML-based framework for analyzing pulsar timing data with reduced systematic errors. 
2. Enhanced detection capabilities for low-frequency GWs using PTAs. 
3.Contribution to the global effort in detecting and characterizing the nanohertz GW background. 
 

 Significance 
 
This research will address critical challenges in PTA-based GW detection and contribute to 
advancing astrophysical and cosmological studies. By integrating ML techniques into pulsar 
timing analysis, the study will pave the way for improved precision and novel discoveries in GW 
astronomy. 
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CHAPTER 1: INTRODUCTION 
 

1.1 Background 
The IROAST Young Internship Researcher program is designed for Master’s students who 

intend to pursue a PhD at Kumamoto University, providing an opportunity for international 
collaboration in academic research. Through this program, I worked under the supervision of 
Prof. Yuta Nakashima in the Bioengineering Laboratory at Kumamoto University, with a focus 
on integrating computer science into biomedical engineering. As a researcher in computer 
science specializing in biomedical engineering, my role in this program was to develop 
artificial intelligence and programming-based solutions to improve efficiency in cancer and 
non-cancer cell identification and accelerate biomedical experiments. I was responsible for 
enhancing the computational process for cell analysis by developing algorithms and 
computational models that make the analysis of cell characteristics more efficient. 
Additionally, I worked on developing machine learning models using deep learning to classify 
and predict cancer and non-cancer cells with high accuracy. Beyond computational tasks, I 
was also involved in the fabrication of cell analysis tools, aiming to improve accuracy in 
biomedical experiments. I played a key role in monitoring the cell dataset used in research, 
ensuring proper dataset management, preprocessing, and cleaning to maintain high data 
quality for predictive modeling. Furthermore, I contributed to training laboratory members in 
Python programming, assisting them in building automated research systems to enhance 
efficiency and independence in data analysis. This collaboration serves as a bridge between 
bioengineering and artificial intelligence, utilizing deep learning technologies for medical 
image processing. The implementation of these methodologies allows research conducted in 
the laboratory to be more efficient, accurate, and well-integrated, supporting the development 
of AI-driven cancer diagnosis systems. Working alongside all laboratory members under Prof. 
Yuta Nakashima has deepened my interest in this research and highlighted its potential for 
further development. As a result, after completing this internship, I intend to continue this 
research as part of my PhD program at Kumamoto University. I hope that my future studies 
will make a significant contribution to the field of biomedical engineering, particularly in 
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advancing AI-based systems for medical applications. 
 

1.2 Internship Objectives 
 This internship aimed to integrate computer science into biomedical engineering by 
applying artificial intelligence to enhance efficiency in cell analysis, classification, and 
prediction. Under the supervision of Prof. Yuta Nakashima at the Bioengineering Laboratory, 
Kumamoto University, I developed deep learning algorithms and models to accelerate cell 
analysis and improve the accuracy of cancer and non-cancer cell classification. Additionally, 
I contributed to the fabrication of cell analysis tools to enhance experimental precision and 
conducted dataset monitoring and preprocessing to ensure optimal data quality for research. 
Beyond technical contributions, I also trained laboratory members in Python programming to 
support the development of automated research systems. This internship not only focused on 
technological advancements in biomedical analysis but also encouraged knowledge exchange 
and collaboration between computer science and bioengineering, fostering more efficient and 
accurate research in medical diagnostics. 

 
1.3 Scope of the Internship 

The scope of my research in this internship was the application of computer science in 
biomedical engineering, particularly in developing AI-based methods for cell analysis, 
classification, and prediction. This research involved biomedical image processing using deep 
learning, optimizing algorithms to improve cell computation efficiency, and exploring data-
driven prediction techniques. Beyond modelling and analysis, this research also included the 
fabrication of biomedical analysis tools to support laboratory experiments and the 
management and preprocessing of cell datasets to ensure optimal data quality for research. 
Additionally, the research scope involved collaboration with laboratory members in 
developing automation systems and utilizing computational methods to enhance 
bioengineering research. 
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CHAPTER 2: ACTIVITIES AND FINDINGS 

 
2.1 Tasks and Activities Performed 

 In this section, I will detail the steps I undertook during the internship until I was able to 
successfully calculate cells and classify them using deep learning. Each stage of this process 
involved a series of steps, starting from understanding the laboratory system, processing cell 
datasets, developing deep learning models, and implementing the model. All activities were 
carried out under the guidance of Prof. Yuta Nakashima, following a structured approach to 
ensure that each aspect of the research progressed effectively. These stages included data 
preparation, computational model design, and parameter optimization, all of which played a 
crucial role in advancing research in biomedical engineering. 

 
A. Microfluidic Device Fabrication  

Microfluidic device fabrication refers to the design and manufacturing process of 
miniaturized systems used to control and manipulate fluids in extremely small volumes, 
typically at the microliter or nanoliter scale. These devices are widely applied in 
bioengineering research, diagnostics, and lab-on-a-chip technology, allowing precise analysis 
of biological samples. The fabrication process involves several key stages, including substrate 
preparation, patterning, casting, and bonding, to create microchannels and functional 
components that enable controlled fluid flow at the microscopic level.  

 

    
 
The primary materials used in fabrication include polydimethylsiloxane (PDMS), glass, 

and silicon, chosen for their optical transparency, biocompatibility, and ease of molding. By 
integrating microfluidic technology into bioengineering, researchers can develop advanced 
platforms for cell analysis, drug testing, disease diagnostics, and organ-on-a-chip systems. 
This fabrication process requires high precision, as even minor variations in microchannel 
dimensions or bonding quality can significantly impact the device’s performance. In this 
internship, I focused on microchannel patterning, ensuring high-quality device structures, and 
optimizing the fabrication process for bioengineering applications. Below are the step by step 
steps that I did to do the stages of Microfluidic Device Fabrication: 

 
1. Conducted substrate cleaning using an ultrasonic bath with acetone, methanol, and 

ultrapure water. 
2. Processed the substrate with piranha solution for deep cleaning and rinsed with 

ultrapure water. 
3. Performed photoresist coating using SU-8 3050 and a spin-coating method to achieve 

a 100 µm film thickness. 
4. Conducted prebake, exposure, post-exposure bake, and hard baking to develop the 
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microfluidic patterns. 
 

B. PDMS (Polydimethylsiloxane) Preparation and Casting 
PDMS (Polydimethylsiloxane) preparation and casting refers to the process of mixing, 

degassing, molding, and curing PDMS to create microfluidic structures. PDMS is a 
silicone-based elastomer widely used in bioengineering and microfluidic device fabrication 
due to its biocompatibility, flexibility, transparency, and ease of fabrication. This process 
involves mixing PDMS with a curing agent in a specific ratio, removing air bubbles 
through degassing, pouring the mixture into a mold, and curing it under controlled 
temperature conditions to solidify the structure. PDMS casting enables the formation of 
microchannels and other functional components essential for fluid manipulation in 
microfluidic systems. Proper preparation ensures a homogeneous and defect-free material, 
which is crucial for achieving accurate and efficient fluid flow in bioengineering 
applications. Additionally, PDMS can be bonded with glass or other surfaces using plasma 
treatment, making it a key material in the development of lab-on-a-chip devices, biosensors, 
and organ-on-a-chip systems. Below are the stages of making PDMS 
(Polydimethylsiloxane) Preparation and Casting: 

 

  
 
1. Prepared PDMS mixture in a 10:1 ratio with a curing agent. 
2. Used the Awa-tori Rentaro super mixer to mix and perform a defoaming process to 

remove air bubbles. 
3. Coated the mold with a fluoropolymer spray to prevent adhesion before casting. 
4. Degassed the PDMS mixture in a desiccator to eliminate trapped air before pouring it 

onto the mold. 
5. Cured the PDMS at 70°C for one hour to solidify the structure. 
 

C. Microfluidic Device Assembly 
Microfluidic device assembly refers to the process of integrating different 

components of a microfluidic system, ensuring proper alignment, bonding, and 
functionality of the device. This process involves removing the fabricated microfluidic 
structure from the mold, creating access points for fluid flow, bonding the microchannels 
to a substrate (such as glass or PDMS), and conducting final quality checks to ensure the 
device operates correctly. Proper assembly is crucial to maintaining leak-free fluid flow, 
precise microchannel dimensions, and stable bonding between materials. A commonly 
used technique for bonding is oxygen plasma treatment, which enhances the adhesion 
between PDMS and glass by activating their surfaces at the molecular level. Other methods 
include thermal bonding, chemical bonding, and mechanical clamping, depending on the 
application and material compatibility. The final step in the assembly is the inspection and 
testing of the device, where microchannels are checked for blockages, leaks, and structural 
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integrity. Successfully assembled microfluidic devices are widely used in cell analysis, 
drug testing, and diagnostic applications, providing a powerful tool for biomedical and 
bioengineering research. below are the stages of making Microfluidic Device Assembly: 

 
1. Carefully removed the cured PDMS from the mold and punched holes in the 

microchannels. 
2. Performed oxygen plasma bonding to attach the PDMS layer to the glass substrate. 
3. Ensured proper alignment and bonding to achieve a strong and durable connection. 
4. Conducted final inspection and testing of the microfluidic device, verifying the 

integrity of microchannels and the bonding strength. 
 

   
 
 
 
 
 
 
 
 
 
 

D. Developing and Printing 3D Models in the Laboratory 
In the laboratory, I am experimenting with creating and printing 3D models as part 

of research exploration in bioengineering. This process involves digital modeling using 3D 
software, converting designs into a compatible format, and finally printing them using a 
3D printer. By utilizing this technology, we can create prototype devices and 
microstructures that support various bioengineering experiments. As an initial step, I 
designed simple models that are used to aid research in bioengineering. These models are 
developed based on specific research requirements, such as microchannel structures for 
microfluidic devices, components for cell analysis, or parts of experimental equipment. 
Using SketchUp, I learned how to translate conceptual designs into digital models that can 
be printed, ensuring that each model has accurate dimensions, shapes, and functions 
suitable for laboratory experiments. Once the modeling was completed, I converted the 
design into a printer-compatible format, such as STL (Stereolithography), before going 
through the slicing process to generate precise printing instructions. This printing process 
allows us to produce highly accurate components, which are essential for bioengineering 
applications, particularly in microfluidic systems and medical diagnostic components. This 
experiment not only enhances my understanding of 3D printing technology and digital 
modeling but also opens up opportunities to optimize research equipment design in 
bioengineering. By having the capability to print and modify models directly in the 
laboratory, we can quickly test new designs, make adjustments based on experimental 
results, and improve efficiency in developing bioengineering-based research tools. 
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E. Computational Cell Area Calculation Using Python 
1. Overview of the Task 

In this task, I collaborated with lab members in bioengineering research, who had long 
been trying to complete their study but faced challenges due to limited knowledge in 
computer science. This research aimed to develop a computational method for measuring 
cell areas using Python-based image processing techniques. Accurate cell area 
measurement is essential for monitoring growth, spatial distribution, and cell development. 
Without a proper calculation method, analyzing changes in cell size over time had been 
difficult, delaying progress in this research. The primary objective was to quantify the areas 
of two different cells (Cell 1 and Cell 2) as well as the surrounding empty space. By 
obtaining more precise data on cell size and empty regions, this research could provide a 
better understanding of growth patterns and spatial organization of cells. Since manual 
methods were inefficient and prone to errors, we decided to implement a more accurate 
and reproducible computational approach using Python. 

2. Approach and Implementation 
To achieve this, I developed a Python script that processes cell images and extracts area 
measurements through a structured computational workflow. The first step involved image 
preprocessing, including grayscale conversion, thresholding, and contour detection to 
clearly define cell boundaries. Once the contours were obtained, we applied pixel-based 
area calculation within the detected regions. 
 
After successfully implementing this method, we obtained precise area values for both cells 
and the surrounding empty space, providing crucial data for the research. This 
computational approach not only improved accuracy but also ensured that the 
measurements were consistent and reproducible, allowing for further research development. 
This work demonstrates the effectiveness of Python-based computational techniques in 
bioengineering research, particularly in cell monitoring and spatial distribution analysis. 
By integrating image processing and computational analysis, we successfully addressed a 
key challenge and contributed to the study of cell growth and control mechanisms. The 
final results of our calculations are presented in the image attached below: 
 

 
 

F. Bonding Process in Microfabrication for Bioengineering Applications 
The bonding process in microfabrication is a critical step in ensuring the structural 

stability and functionality of patterned samples used in bioengineering research. In 
experiments involving microfluidic devices, biosensors, and other biomedical applications, 
proper bonding ensures that fabricated structures adhere securely to a substrate, 
maintaining their integrity during subsequent analysis and testing. Achieving strong, 
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uniform, and defect-free bonding is essential to prevent structural inconsistencies that 
could affect experimental results. In this research, I focused on optimizing the bonding 
process for microfabricated patterned structures, ensuring that the adhesion was strong and 
consistent. This step was crucial in preparing the samples for further evaluation and 
functional validation in bioengineering applications. 

 
   
 
 
 
 
 
 
 
 
 
 
 
 To ensure a reliable and high-quality bond, I followed a systematic bonding 

procedure, carefully optimizing key parameters to enhance adhesion strength and 
uniformity. The following steps were taken: 

1. Preparation of Patterned Structures and Substrate 
 The patterned samples were carefully cleaned to remove contaminants 

that could interfere with bonding. 
 The substrate was also treated to enhance adhesion compatibility with 

the patterned structures. 
2. Alignment and Initial Contact 

 The patterned structures were precisely aligned with the substrate to 
avoid misalignment. 

 Light pressure was applied to ensure initial contact and prevent air gaps 
between the layers. 

3. Optimization of Bonding Parameters 
 Pressure: Adjusted to ensure sufficient contact without causing 

material deformation. 
 Temperature: Carefully controlled to promote material fusion without 

overheating. 
 Bonding Duration: Optimized to allow complete adhesion while 

preventing excessive exposure to heat. 
4. Final Bonding Process 

 The bonded samples were subjected to controlled pressure and heat 
treatment to achieve uniform adhesion. 

 The structures were inspected to ensure no defects, delamination, or 
weak adhesion points. 

5. Post-Bonding Evaluation 
 The bonded samples were tested for mechanical integrity and stability. 
 Any inconsistencies or weak points were analyzed to refine the bonding 

process further. 
The successful completion of the bonding process ensures that the patterned structures 
remain intact and stable for further research. This step is essential for conducting fluid flow 
analysis, biological testing, and functional validation in bioengineering applications. By 
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optimizing the bonding parameters, this research contributes to the development of high-
performance microfluidic systems, bioMEMS, and biomedical devices, which are essential 
for advancing diagnostic tools, tissue engineering, and lab-on-a-chip technologies. 
 

G. Scaling Up Cell Area Measurement: Optimizing Image Processing Techniques for 
Multiple Cells 

After successfully measuring the area of a single cell, the next challenge was to 
scale up the process and analyze multiple cells simultaneously. The goal was to develop a 
reliable and efficient method for measuring the areas of all collected cell images while 
maintaining accuracy. Given the increased complexity of the task, it was necessary to 
explore advanced image processing techniques to ensure precise segmentation and 
measurement of each cell. The primary challenge was that noise and inconsistencies in the 
images affected the accuracy of cell segmentation and area calculations.  

 
 
 
 
 
 
 
 
 

 
To address this issue, a preprocessing step was introduced to enhance the images, 

making cell boundaries more distinct and reducing segmentation errors. By optimizing this 
step, it was possible to improve the reliability of the calculations and obtain more accurate 
measurements. To achieve the most precise results, I tested different image preprocessing 
and segmentation techniques, focusing on: 

 
Additionally, I visualized the differences between the Gaussian filtering method and the 
OpenCV-based approach, allowing Kazuki to evaluate their effectiveness. The comparison 
provided insights into how different preprocessing techniques affect segmentation 
accuracy and cell area calculation. By the end of the experiment, we successfully obtained 
area measurements for all 12 cells. The final results demonstrated variations in 
measurement accuracy based on different preprocessing techniques, helping Kazuki 
determine which approach best suited his research needs. This study provided valuable 
insights into optimizing cell area measurement for large-scale analysis, and the findings 
will contribute to further refinements in bioengineering and cellular research. 
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H. Dataset Collection for Cancerous and Non-Cancerous Cell Classification 
The ability to accurately classify cancerous and non-cancerous cells is a crucial aspect 

of medical diagnostics and bioengineering research. To develop a reliable classification 
model, it is essential to create a high-quality dataset containing well-represented images of 
both types of cells. In this experiment, Kazuki and I worked on collecting a dataset using 
a microscope equipped with an imaging system, ensuring that the images captured 
provided clear morphological distinctions necessary for classification.  

 

  

 

  

 

                                           

By building a structured and well-labeled dataset, we aimed to develop a machine 
learning-based model capable of identifying and classifying cells based on their visual 
characteristics. This research lays the foundation for future automated diagnostic systems, 
improving efficiency and accuracy in medical research and applications. 

To ensure high-quality and reliable data, we followed a systematic approach to 
microscopic imaging and dataset organization: 

1. Microscopic Imaging and Data Acquisition 
 Used a high-resolution microscope equipped with an imaging system to capture 

detailed cell images. 
 Adjusted focus, contrast, and lighting to enhance cell morphology and improve 

visibility. 
 Ensured consistency in imaging conditions to reduce variability in the dataset. 

2. Balanced Representation of Cancerous and Non-Cancerous Cells 
 Captured equal numbers of cancerous and non-cancerous cell images to avoid bias 

in the dataset. 
 Carefully labeled each image, categorizing it as either cancerous or non-cancerous, 

which is essential for supervised learning in classification models. 
3. Data Organization and Quality Control 

 Structured the dataset into organized folders for efficient data retrieval and training. 
 Performed initial quality inspection to ensure images were clear, well-focused, and 

free of distortions. 
 Removed images with artifacts or inconsistent lighting to maintain data integrity. 

 
I. Aspect Ratio Analysis of Cells Using Image Processing Techniques 

Accurate measurement of cell morphology is crucial in bioengineering research, 
particularly for analyzing cell shape, growth patterns, and classification. One of the key 
morphological descriptors is the aspect ratio, which is determined by measuring the major 
and minor axes of a cell. The aspect ratio provides insights into cell elongation, 



 

9 
 

deformation, and structural properties, which are important for applications in cancer cell 
analysis, tissue engineering, and diagnostic research. In this research, I applied image 
processing techniques to determine Axis A (major axis) and Axis B (minor axis) for 
calculating the aspect ratio of multiple cells. These measurements allow for a deeper 
understanding of cell morphology and spatial distribution in bioengineering studies. 
 

J. Geometric Analysis of Macrophage Cells: Data Collection and Aspect Ratio 
Computation Under Varying Conditions 

Understanding the geometric properties of macrophage cells is crucial in 
bioengineering and biomedical research, particularly in analyzing cell morphology, 
behavior, and responses to different experimental conditions. One key parameter used to 
quantify these properties is the aspect ratio, which provides insights into cell elongation, 
deformation, and structural changes under varying conditions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
To investigate these morphological characteristics, Nakashima Sensei instructed 

me to collaborate with Bob in collecting new macrophage cell data and calculating their 
aspect ratios. The goal was to ensure a systematic analysis of macrophage cells by dividing 
each cell into 8 parts and capturing multiple images per section under controlled focus 
conditions. Additionally, we collected images of macrophage cells under 8 different 
conditions, allowing for a comparative analysis of their geometric properties across various 
experimental setups. 
To ensure a structured and reliable dataset, we implemented the following systematic data 
collection process: 
 
1. Dividing Macrophage Cells into 8 Sections 

 Each cell was divided into 8 distinct parts for localized morphological analysis. 
 For each part, we captured three images under identical focus conditions to 

maintain consistency in image acquisition. 
2. Capturing Images Under 8 Experimental Conditions 

 Beyond section-based imaging, we collected additional images representing 8 
distinct conditions, with one image per condition to study the macrophage cell 
responses under different experimental setups. 

3. Ensuring Image Quality and Consistency 
 All images were taken using the same microscope settings, adjusting focus and 

contrast to minimize variability. 
 The data was structured systematically to ensure accurate comparisons across 

different sections and experimental conditions. 
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K. Aspect Ratio Calculation Using Black-and-White and Color-Based Segmentation 

Methods 
The aspect ratio is a crucial parameter in cell morphology analysis, providing 

insights into cell elongation, deformation, and structural characteristics. In this study, I 
calculated the aspect ratio using two different segmentation methods to ensure accurate 
and reliable results. The first method, black-and-white segmentation, is based on 
thresholding, which distinguishes cells from the background by analyzing grayscale 
intensity. The second method, color-based segmentation, utilizes color channels to more 
precisely identify different regions within the cell structure. The application of these two 
methods aims to evaluate the effectiveness of each approach in analyzing newly acquired 
macrophage cell data. By comparing these techniques, I can determine the optimal method 
for achieving more precise segmentation, enabling a better analysis of cell morphology 
under various experimental conditions. 

 
L. Adaptive Analysis of Macrophage Cells: Aspect Ratio, Complexity, and Equivalent 

Diameter Calculation 
In biological research, understanding cell morphology under different culture 

conditions is essential for evaluating growth patterns, structural adaptation, and functional 
changes. This study aimed to refine the aspect ratio calculation by adapting the 
segmentation process to cell orientation, ensuring a more precise representation of cellular 
structures. Unlike the initial dataset, where cells were freshly isolated, the new dataset was 
collected after 24 hours of culture, allowing for the observation of morphological changes 
over time. Additionally, to enhance the comprehensiveness of the analysis, two extra 
parameters—complexity and equivalent circle diameter—were introduced based on 
Nakashima Sensei’s suggestion.  

 
M. Aspect Ratio, Complexity, and Boundary Length Variations: Evaluating Macrophage Cell 

Morphology 
Understanding the morphological characteristics of macrophage cells is essential in 

bioengineering and biomedical research, particularly in analyzing cell shape, structural complexity, 
and membrane dynamics under different experimental conditions. This study focuses on three 
critical parameters: Aspect Ratio, Complexity, and Boundary Length, which provide a 
comprehensive insight into how macrophage cells adapt, spread, and interact with their 
environment. Additionally, three key aspects were considered for each parameter: structural 
adaptation, functional implications, and analytical significance. The Aspect Ratio (AR) was 
calculated by comparing the major axis (Axis A) and minor axis (Axis B) of each cell. A higher 
aspect ratio indicates elongated cells, often associated with active migration or polarization, 
whereas a lower aspect ratio suggests more circular cells, indicating a resting or non-migratory 
state. This metric is crucial for evaluating cell movement patterns and morphological 
transformations during different biological processes. The three aspects of aspect ratio analysis 
include (1) cell elongation behavior, (2) shape stability over time, and (3) correlation with 
macrophage activation states. 

Complexity describes the irregularity of cell shape, measured as the perimeter squared 
divided by the cell area. Higher complexity values indicate branched or irregular structures, 
commonly seen in activated macrophages, whereas lower values represent smooth and rounded 
cell morphologies. This measurement helps assess how macrophages respond to stimuli by altering 
their structural composition. The three key aspects of complexity evaluation include (1) cell 
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membrane roughness and extensions, (2) differentiation between activated and resting states, and 
(3) variability across different culture conditions. 

The Boundary Length represents the total perimeter of a cell, providing insights into 
membrane expansion and cytoskeletal dynamics. Cells with longer boundary lengths often exhibit 
increased activity and motility, whereas shorter boundary lengths indicate more compact and less 
dynamic cells. This parameter is useful for studying how macrophages extend and retract their 
plasma membranes during immune responses. The three critical aspects of boundary length 
analysis are (1) extent of cytoplasmic protrusions (e.g., filopodia, lamellipodia), (2) membrane 
flexibility and deformation, and (3) relationship between boundary length and overall cell 
spreading efficiency. By integrating these morphological parameters, this study enhances our 
understanding of macrophage behavior, structural adaptation, and functional dynamics. These 
findings are essential for applications in biomedical engineering, immune system research, and 
AI-driven cell morphology classification. Future studies will focus on automated segmentation 
techniques and temporal morphological changes to further refine macrophage cell analysis. 
 
1. Analysis of Boundary Length Distribution in Macrophage Cells 

The analysis of macrophage cell boundary length provides essential insights into how cells 
adapt and respond to their surrounding environment.  

 

 

 

 

 

 

 

 

This graph illustrates the distribution of cell perimeter lengths across different 
experimental conditions, with each data group represented in different colors. From the image 
analysis results, significant variations in boundary length are observed, indicating that some 
cells exhibit greater membrane extensions than others. The mean intensity value of 0.89 with 
a standard deviation of 9.53 suggests high variability in the data distribution, likely influenced 
by differences in macrophage activation states. 

Cells with longer boundary lengths are generally associated with more active macrophages, 
where the membrane undergoes increased expansion and the formation of cytoplasmic 
extensions such as filopodia and lamellipodia. In contrast, shorter boundary lengths indicate 
more compact and less dynamic cells, which may be in a resting state or exhibit minimal 
response to environmental stimuli. Some groups in the graph display a wide range of variations, 
which could suggest a high level of heterogeneity within the cell populations under different 
experimental conditions. This analysis serves as a foundation for further studies on the 
relationship between boundary length, complexity, and aspect ratio, helping to understand 
macrophage morphological changes. The next step is to conduct a more in-depth statistical 
analysis to determine whether the differences between groups are significant and how 
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environmental factors influence cell shape and membrane dynamics. With these insights, 
future research can focus on applying machine learning models to classify cells based on 
morphological parameters, enabling automated analysis in cellular studies and bioengineering. 

 
2. Complexity Analysis of Macrophage Cell Morphology 

The analysis of macrophage cell complexity provides insight into how cell shape varies 
under different experimental conditions. The graph visualizes complexity distributions, where 
each color represents a distinct condition, and the scatter plot with error bars shows mean 
complexity values along with their standard deviations. Complexity is measured based on the 
perimeter-to-area ratio, which quantifies how irregular or branched a cell structure is. A higher 
complexity value indicates cells with more membrane protrusions and irregularities, while 
lower complexity values suggest a smoother and more compact morphology. From the 
observed results, some groups exhibit significantly higher complexity, suggesting that 
macrophages in these conditions undergo morphological changes, potentially due to activation 
or environmental stimuli. 

 

 

 

 

 

 

 

 

 In contrast, groups with lower complexity values show a more rounded and uniform 
morphology, which may indicate that the cells are in a resting or less active state. The 
variability observed across different conditions suggests that external factors influence 
macrophage structure, potentially altering their functional behavior, such as their ability to 
migrate or interact with other cells. This analysis has important implications for understanding 
macrophage activation, structural adaptation, and immune responses. Higher complexity 
values could be linked to macrophage activation states, where cells extend their membrane for 
processes like migration or phagocytosis. Additionally, these morphological features could be 
integrated into machine learning models for automated cell classification, allowing for efficient 
identification of activated vs. non-activated cells. Future research will focus on performing 
statistical validation of these findings and correlating complexity with other morphological 
parameters, such as boundary length and aspect ratio, to provide a more detailed 
characterization of macrophage behavior. 

 
3. Aspect Ratio Analysis of Macrophage Cells 

The aspect ratio of macrophage cells is a crucial parameter in understanding cell elongation, 
shape variation, and structural adaptation under different experimental conditions. The 
graph represents the distribution of aspect ratio values, with each dataset corresponding to 
a specific condition. The aspect ratio is calculated by comparing the major axis (Axis A) 
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to the minor axis (Axis B), where higher values indicate elongated cells, typically 
associated with cell migration, polarization, or activation, while lower values correspond 
to more rounded and compact cells, suggesting a resting or non-motile state. From the 
observed results, some groups exhibit higher aspect ratios, indicating that macrophages in 
these conditions tend to elongate, possibly due to increased motility or an activated state. 
In contrast, other groups display lower aspect ratios, suggesting that the cells remain more 
rounded and stable, potentially representing a resting phase or a non-stimulated state. The 
presence of wide error bars in certain groups suggests high variability in cell elongation, 
indicating that different cells within the same condition may respond differently to 
environmental stimuli. Conversely, groups with narrower distributions reflect more 
uniform cell morphologies, suggesting that cells are adapting consistently under those 
conditions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

These findings provide valuable insights into macrophage behavior and structural 
adaptation, particularly in response to environmental changes. Cells with higher aspect 
ratios could be undergoing pro-inflammatory activation, extending their shape for 
migration or interaction with their surroundings. The variability in aspect ratio across 
different conditions suggests that external factors influence macrophage morphology, 
affecting their functional state and mechanical properties. Additionally, these 
measurements can be applied to automated classification models using AI, allowing for 
efficient and objective identification of activated vs. non-activated macrophages. Further 
statistical analysis will be conducted to confirm the significance of these variations, and 
future studies will explore correlations between aspect ratio, complexity, and boundary 
length to build a more comprehensive model of macrophage morphological changes. 

 
 

CHAPTER 3: FUTURE RESEARCH PLAN 
 

This internship under the IROAST Young Internship Researcher program has provided a 
comprehensive learning experience in the field of biomedical engineering, particularly in the 
application of computer science for cell morphology analysis. Throughout this research, I have 
focused on analyzing macrophage cell structures by implementing advanced image processing 
techniques, deep learning models, and statistical evaluations. The key aspects covered include 
aspect ratio, complexity, and boundary length measurements, which have been crucial in 
understanding cell behavior, activation states, and structural adaptations under different 
experimental conditions. The internship has reinforced the importance of interdisciplinary 
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collaboration, where my expertise in computer science was applied to enhance the efficiency of 
image analysis and data processing for biological research. I have worked closely with members 
of the bioengineering laboratory under Prof. Yuta Nakashima to refine computational methods 
for segmenting, classifying, and predicting cell morphology. The integration of Python-based 
computational techniques allowed for the automation of image segmentation, statistical 
calculations, and data visualization, significantly reducing manual efforts in biological 
experiments. 

 
3.1 Future Research Directions 

A.  Deep Learning Integration for Automated Cell Classification 
 The next step in this research is to develop a deep learning-based classification system 

capable of distinguishing between activated and non-activated macrophages using 
morphological features such as aspect ratio, complexity, and boundary length. 

 By utilizing Convolutional Neural Networks (CNNs) and Transformer-based models, 
we can improve cell detection accuracy and pattern recognition, enabling real-time 
analysis of cell behavior. 
 

B.  Expanding Image Dataset and Model Generalization 
 A major limitation in biological image analysis is dataset diversity. Future research will 

focus on expanding the dataset to include macrophages cultured under different 
conditions, ensuring that machine learning models are robust and generalizable. 

 Multi-modal learning will be explored by incorporating metadata from cell culture 
conditions along with image-based features, providing a more comprehensive 
understanding of cell behavior. 
 

C.  Optimized Feature Extraction for Bioengineering Applications 
 The extracted parameters, such as aspect ratio, complexity, and boundary length, 

provide valuable insights into cell functionality and adaptation. 
 Future research will focus on refining feature extraction methods to improve the 

correlation between computationally derived morphological features and biological 
phenomena. 

 The goal is to enhance biomedical diagnostic systems by providing accurate, 
quantitative, and reproducible cell morphology assessments. 
 

 
 
 

CHAPTER 4: CONCLUSION 
 

The research conducted during this IROAST internship serves as a strong foundation for 
future advancements in biomedical engineering, especially in the automated analysis of cellular 
structures. By integrating deep learning, advanced image processing, and computational modeling, 
this research can contribute to more efficient, accurate, and scalable solutions for studying cell 
morphology and immune responses. Moving forward, expanding the dataset, optimizing 
computational methods, and enhancing interdisciplinary collaboration will be key steps toward 
applying this research in real-world medical and bioengineering applications. 
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1. Tasks and Learning Outcomes 
During this internship, my primary focus was evaluating the microscopic stress state at asperities 
on a rock discontinuity through 3DEC numerical simulations. The key tasks accomplished and 
insights gained are as follows: 
1) Mesh Simplification and Model Preparation: 
I utilized Rhino software to simplify the mesh of STL files, reducing mesh density while retaining 
critical geometric features required for numerical simulations. Through this process, I became 
proficient in various tools and functional modules within Rhino, such as mesh simplification, 
repair, and optimization. 
 

 
Fig. 1 Mesh Simplification 

 
2) Model Generation and Parameter Configuration: 
After exporting the simplified mesh in grid format, I prepared the model in 3DEC for uniaxial 
compression tests. This stage involved defining material parameters, boundary conditions, and 
loading configurations, with a focus on replicating the microscopic characteristics of the 
discontinuity. Through this task, I gained a deeper understanding of the importance of parameter 
calibration in accurately simulating the mechanical behavior of rock discontinuities. 



 

 
 

 
Fig. 2 Model Generation 

 

 
Fig. 3 Define material parameters 

 
3) Uniaxial Compression Simulation: 
I conducted uniaxial compression tests on cylindrical models using 3DEC, focusing on the stress 
distribution and deformation characteristics at asperities under loading conditions. This process 
significantly enhanced my skills in numerical simulation and stress analysis. 



 

 
 

 
Fig. 4 Pre-compression contact 

 

 
Fig. 5 uniaxial compression 

 
4) Post-Processing and Analysis: 
I utilized advanced post-processing techniques to analyze the simulation results, focusing on the 
strain distribution at asperities. Visualization of failure zones was generated to provide deeper 
insights into the deformation and failure mechanisms. 



 

 
 

 
Fig. 6 Strain distribution at the bulge 

 
Through the above tasks, I gained proficiency in key techniques such as numerical modeling, mesh 
optimization, and strain analysis of rock discontinuities. Additionally, I further enhanced my 
expertise in using software tools like Rhino and 3DEC, laying a solid foundation for future 
research in rock mechanics. 
2. Future Research Plans 
Building on the experience gained during this internship, I plan to further deepen my research in 
the following areas: 
1) Incorporating Complex Geometric Features: 
Future studies will focus on analyzing more complex asperity geometries and discontinuity 
patterns to better simulate real-world engineering conditions. This includes integrating natural 
surface roughness characteristics to explore their impact on stress states and failure mechanisms. 
2) Experimental Validation: 
I plan to conduct laboratory tests, such as CT scanning of asperity deformation, to validate the 
numerical simulation results and acquire additional data to improve model accuracy. 
3) Sensitivity Analysis and Optimization: 
I aim to systematically analyze the sensitivity of key parameters, such as asperity size, shape, and 
material properties, to identify the factors with the most significant influence on stress states. This 
will facilitate optimizing model designs for specific applications, such as stability assessments in 
rock engineering. 
The knowledge and skills acquired during this internship have provided a strong foundation for 
my future research and have fueled my enthusiasm for addressing complex challenges in rock 
mechanics. I aspire to contribute to advancements in the field and its practical applications through 
continued investigation and innovation. 
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1. Tasks you have engaged in and what you have learned 

Hydrology is concerned with the interaction of water with the environment at each stage of the 
hydrologic cycle. The hydrological cycle contains several interrelated components; for example, 
streamflow is connected with precipitation. Surface runoff is a key component of water resource monitoring 
as well as resolving water quality and quantity issues like flood predictions and ecological and biological 
connections in the aquatic environment. Runoff is also a major contributor to contaminant transport because 
surplus nutrients and pesticides from agricultural lands are transported into rivers by runoff events. 
Therefore, estimating runoff is crucial for the management of water resources, the aquatic environment, 
and flood mitigation. 

Runoff models depict what happens in water systems as a result of changes in impervious areas, 
vegetation, and weather events. A runoff model is a series of equations that help in the calculation of the 
quantity of rainfall that converts into runoff as a function of several parameters used to characterize the 
watershed. Based on the modeling structure, rainfall-runoff modeling can be characterized as empirical or 
data-driven black box models, conceptual models, and physically based models. 

As a kind of data-driven approach, machine learning models are effective and usually outperform 
standard hydrologic models but they require high computational resources to train complex relations within 
input and output datasets. As a subfield of machine learning, deep learning is a highly discussed subject in 
various fields and has been applied to address numerous issues in hydrology, including rainfall-runoff 
modeling. Thus, developing accurate and efficient rainfall-runoff models using deep learning approaches 
would be beneficial for disaster prevention and mitigation efforts. In this research internship program, I 
employed deep learning approaches for runoff simulation, such as recurrent neural network (RNN) and 
convolutional neural network (CNN), and attention mechanism. 



 

 
 

 
Figure 1. Sacramento River basin coverage area. 

 
Figure 2. Visualization of the daily observation data. 

The rainfall-runoff modeling was implemented to simulate flow discharge with the consideration of 
air temperature and precipitation data using several deep learning approaches. A simulation of flow 
discharge of Sacramento River in California, USA is selected to be the case study. The Sacramento River 
basin as illustrated in Figure 1, characterized by diverse land use, topography, and vegetation, offers unique 
insights into rainfall-runoff interactions across varied environments, such as urban, agricultural, and 
forested areas. Its significant rainfall patterns, including Northern California’s rainy winters, allow for 
modeling runoff behaviors under both moderate and heavy precipitation events. The region’s extensive 
historical hydrological data, encompassing streamflow, rainfall, and weather records, supports accurate 
calibration and validation of runoff models. Additionally, the area's susceptibility to flooding, exacerbated 
by Sierra Nevada snowmelt during the rainy season, underscores the importance of such models in flood 
risk management, infrastructure planning, and emergency response. 



 

 
 

The dataset used was observational data of daily river flow discharge, air temperature, and 
precipitation collected over 10 years, from 2009 to 2018. The daily river flow discharge, air temperature, 
and precipitation were collected from the Global Runoff Data Centre (GRDC), National Centers for 
Environmental Information (NCEI), and California Data Exchange Center (CDEC), respectively. The 
dataset was segregated into three sets: training, validation, and test datasets. The periods of the training, 
validation, and test datasets are 80%, 10%, and 10%, respectively. Missing data points are handled by using 
linear interpolation. 

In this study, three RNN architectures were used: LSTM, GRU, and original RNN. Multi-Head 
Attention (MHA) and a one-dimensional (1D) CNN architectures were used for comparation. The same 
hyperparameter configuration listed in Table 1. In addition, 1D CNN was used with the configuration listed 
in Table 2. Figure 2 illustrates the data daily flow discharge, air temperature, and precipitation assigned as 
input features. The task was to simulate flow discharge data for the next seven days based on the given data 
features from the past data within the given timesteps. Peak flows (flows ≥ 90th percentile) were measured 
to evaluate and enhance the model’s performance in capturing extreme hydrological events, such as floods. 
The importance of these peak flows lies in their relevance to applications like flood management and 
hydraulic structure design, especially under climate change conditions. By focusing on these extreme 
conditions, reliability in predicting critical events was ensured, addressing the challenges essential for 
practical water resource and disaster management tasks. 

Table 1. Tuning information used in this study. 
Hyperparameter Value or method 

Hidden state length 50 
Numbers of recurrent layer 1 
Batch size 64 
Embed size 64 
Number of attention heads 4 
Loss function MSE 
Optimization algorithm Adam 
Epoch 100 
Patience of early stopping 50 
Sequence length 30, 60, 120 
NCHF 8, 16, 32 
Evaluation metrics RMSE, R, NSE 

Table 2. Configuration information of the 1D CNN layers. 
Layer Input Channel Output Channel Kernel Stride Padding 

Conv1 num_features 8/16/32 3 1 1 
MaxPool1 8/16/32 8/16/32 2 2 - 
Conv2 8/16/32 16/32/64 3 1 1 
MaxPool2 16/32/64 16/32/64 2 2 - 
FC 16/32/64 * (seq_length // 4) output_size - - - 

 
The results of RNN statistically compared each model in Table 3. Figure 3 illustrates the relationships 

between variables and Figure 4 illustrates the observed and simulated flow discharge. Overall, the selected 
RNN models showed the capability to learn long-duration dependencies between input and target time-
series variables with relatively higher accuracy than 1D CNN. It resulted in lower accuracy for the 
configuration set among the employed RNN models. NSE value of more than 0.5 is deemed acceptable. 
The comparison results may be different with other combinations of the hyperparameters. However, the 
MHA model with sequence length above 60 because longer sequences significantly increase the complexity 
of the task, requiring the model to learn relationships across a broader temporal window, which can exceed 
its representational capacity, especially if the embedding size or number of attention heads is insufficient. 



 

 
 

Additionally, longer sequences may introduce irrelevant or noisy information, diluting the model's ability 
to focus on the most critical temporal patterns. The reduced predictive relevance of distant timesteps further 
complicates learning, and the model may struggle to maintain meaningful gradient flow across extended 
inputs. 

 
Figure 3. Example of scatter plot for LSTM, 1D CNN, and MHA from the training, validation, and testing 

phase with sequence of 120. 

 
Figure 4. Example plot of observed and simulated flow discharge for LSTM, 1D CNN, and MHA from 

the testing phase with sequence of 120. 

Table 3. Statistical comparison of each model. 

Model Seq. 
Training Validation Testing 

RMSE R NSE RMSE R NSE RMSE RMSE 
(Peak) R NSE 

LSTM 120 144.244 0.888 0.782 91.515 0.946 0.890 53.288 34.155 0.822 0.671 
60 136.928 0.899 0.803 145.145 0.972 0.926 152.030 305.045 0.806 0.637 
30 135.914 0.898 0.806 148.783 0.974 0.944 149.592 264.290 0.794 0.617 

GRU 120 139.867 0.892 0.795 84.749 0.952 0.905 54.741 40.516 0.820 0.658 
60 136.357 0.897 0.803 133.771 0.971 0.936 153.032 330.009 0.799 0.629 
30 139.843 0.893 0.795 150.478 0.974 0.943 147.651 276.246 0.798 0.628 

RNN 120 137.730 0.895 0.801 81.368 0.956 0.913 54.525 46.551 0.817 0.657 
60 137.751 0.894 0.799 136.158 0.972 0.934 153.779 353.263 0.795 0.625 
30 140.335 0.891 0.793 163.079 0.975 0.933 146.203 326.651 0.800 0.634 

MHA 120 211.766 0.743 0.537 168.461 0.873 0.657 241.619 102.865 -0.305 -1.162 
60 167.941 0.852 0.707 185.117 0.953 0.878 200.319 315.444 0.700 0.433 
30 162.098 0.857 0.726 208.252 0.964 0.891 168.395 266.847 0.741 0.530 

1D CNN, 
NCHF 32 

120 163.336 0.871 0.727 136.673 0.916 0.772 83.136 83.408 0.744 0.391 
60 139.999 0.922 0.803 144.673 0.964 0.926 194.695 309.195 0.807 0.498 
30 117.398 0.925 0.855 157.333 0.970 0.938 153.810 351.859 0.788 0.597 

1D CNN, 
NCHF 16 

120 117.543 0.932 0.857 123.027 0.895 0.801 80.853 57.990 0.663 0.303 
60 134.600 0.912 0.812 159.614 0.962 0.910 175.999 352.801 0.778 0.547 
30 147.765 0.879 0.771 205.525 0.964 0.895 147.799 269.407 0.799 0.626 

1D CNN, 
NCHF 8 

120 159.654 0.878 0.741 133.823 0.912 0.779 93.848 46.481 0.796 0.348 
60 151.246 0.884 0.763 192.578 0.964 0.874 168.515 346.296 0.783 0.573 
30 141.685 0.890 0.790 216.514 0.968 0.885 150.080 281.206 0.799 0.618 

 
 
 



 

 
 

2. Future research plan 
During this research internship, I gained valuable insights into advanced modeling techniques and 

their applications in hydrological studies. I plan to continue collaborating with Dr. Ishida to refine the model 
and explore opportunities for joint publications. Dr. Ishida’s research focus and the work of his laboratory 
align closely with my future research interests, particularly in leveraging deep learning to address critical 
challenges in hydrology. I am especially excited about the possibility of establishing a robust research 
collaboration with Dr. Ishida at IROAST, Kumamoto University. The integration of cutting-edge deep 
learning methods into hydrological modeling offers a promising avenue for tackling urgent issues such as 
flood mitigation, water resource management, and the assessment of climate change impacts. Dr. Ishida’s 
expertise, coupled with the innovative resources and environment of his laboratory, will be pivotal in 
advancing these efforts. I am confident that this collaboration will not only enhance my academic 
development but also contribute significantly to impactful research in this field. 
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Details of activities 
1. Tasks you have engaged in and what you have learnt 
【16/07/24 ~ 22/07/24】 
- Identification of ecDNA breakpoint sequences 
Whole Genome Sequencing (WGS) data was utilized to identify ecDNA breakpoint sequences 
using SvABA and Amplicon Architect. Based on the identified sequences, primer sequences were 
designed. 

      
Figure 1. analyzed ecDNA structure 

 
- DNA extraction from parental and MDR cell-lines 
DNA was extracted from parental and MDR cell-lines using the ‘QIAamp DNA Mini Kit’ for 
subsequent PCR analysis. Since a single cell can contain multiple types of ecDNA, a sufficient 
amount of DNA is required. 



 

 
 

                
Figure 2. DNA Extraction Process and Quantification Results of Extracted DNA 

 
【23/07/24 ~ 29/07/24】 
- PCR using extracted DNA 
Basic experimental knowledge necessary for PCR, such as the preparation of agarose gels, was 
acquired. PCR was then conducted using the previously extracted DNA and the identified 
breakpoint target primers. This experiment was conducted to cross-check the presence of ecDNA 
identified in silico at the in vitro level. 

             
Figure 3. PCR Experiment Procedure and Results 

Through the PCR results, we were able to confirm the actual presence of the predicted ecDNA 
structure. 
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During my internship at Kumamoto University, I gained a great deal and sincerely thank the 
university for providing this invaluable opportunity for learning and exchange. Here, I met many 
outstanding students and researchers who offered tremendous support and encouragement during 
my visit, allowing me to truly experience the rich academic atmosphere and caring human touch 
of the institution. Over the course of the five-month internship, I delved into research on the 
performance of alkali-activated fly ash and slag foam concrete, attempted to write a review, and 
processed some experimental data. Additionally, I was fortunate to participate in an international 
academic symposium, where I had in-depth discussions with distinguished scholars from around 
the world, which proved to be immensely beneficial. In the final two months, I actively joined 
Professor Cai's team in experimental research, engaging deeply in the project and gaining valuable 
hands-on experience. Next, I will provide a detailed account of these work activities. 
 
1. Writing a Review of Background and Research objectives in the Field of Foamed Concrete 
1.1 A Review of Foamed Concrete 

Traditional foam concrete uses cement and mineral admixtures as the main raw materials, 
adds an appropriate amount of admixtures and water, and the gas generated by foaming through 
physical or chemical methods is evenly mixed into the concrete slurry. After mixing, pouring, 
molding and curing, etc. The process forms an inorganic porous lightweight concrete material that 
is rich in evenly distributed air bubbles. The material has good thermal insulation, sound 
absorption and earthquake resistance, and is easy to process. However, traditional foam concrete 
has significant shortcomings. First, due to the large amount of foam added and the high water-
cement ratio used in its preparation process, when Portland cement is used as the gel material, the 
viscosity of the slurry is not enough. The initial setting time is long, and the foam cannot be fixed 
in the early slurry in time, resulting in internal foam defoaming. The foam concrete material is 
prone to collapse, low strength, and large drying shrinkage in the early stage. Secondly, using 
cement as the gel material will cause a lot of energy consumption and environmental pollution, 
and too much natural river sand will also lead to a waste of resources. In the context of sustainable 
urban development, finding cementitious materials that can replace cement, meet the needs of the 
foam concrete industry, and have the advantages of low price, green and environmental protection 
has become a hot research topic in the construction industry.  

Compared with traditional silicate cement, alkali-activated foamed concrete has its unique 
advantages. Alkali-activated foamed concrete is an inorganic lightweight porous concrete formed 



 

 
 

by mixing foam into alkali-activated materials and uniformly stirring and curing. Alkali-activated 
materials refer to materials with cementitious properties made by the reaction of alkaline activators 
(such as NaOH, Na2O, Ca(OH)2, KOH, etc.) with aluminum silicate solids with potential volcanic 
ash activity or potential hydraulic properties (such as fly ash, slag, recycled micropowder, etc.). 
The principle is that the ionic bonds and covalent bonds such as Si-O-Si bonds, Al-O-Al bonds, 
and Al-O-Si bonds in slag, fly ash, and recycled micropowder are easily broken in an alkaline 
environment, accelerating the disintegration of the structure and making itself hydraulically hard. 
The biggest difference between alkali-activated foamed concrete and traditional foamed concrete 
is that the former does not require any cement clinker, which can not only make full use of 
industrial products to save energy, but also minimize the emission of CO2 during cement 
production and use. Secondly, compared with ordinary Portland cement, alkali-activated foamed 
concrete has better performance, with advantages such as high early strength, rapid coagulation 
and hardening, high temperature resistance, acid and alkali corrosion resistance, etc. Finally, the 
alkaline activator used in the preparation process can make the fresh slurry have a larger viscosity, 
which can better bind the bubbles inside the slurry, forming a large number of closed and uniform 
pores, so that the foamed concrete has better thermal insulation performance. Therefore, the use 
of alkali-activated cementitious materials instead of ordinary Portland cement to prepare foamed 
concrete can not only achieve or even exceed the lightweight, high strength and thermal insulation 
performance of cement-based foamed concrete, but also reasonably utilize solid waste to achieve 
the goals of low energy consumption and low carbon emissions, and has broad development 
prospects.  

At present, some scholars at home and abroad have conducted a series of in-depth studies on 
alkali-activated foamed concrete. Joon-Woo et al. studied the changes in the strength 
characteristics of lightweight aggregate blast furnace slag concrete by changing the dosage of 
alkali activator and the replacement amount of kaolin. The results showed that the compressive 
strength of all specimens at 28 days of age was above 28 MPa, proving the feasibility of using 
alkali-activated lightweight concrete as lightweight concrete. Abdullah et al. studied alkali-
activated fly ash foamed concrete with a density between 1200 kg/m3 and 1700 kg/m3. The 
experimental results showed that its compressive strength can reach up to 17.60 MPa. Duxson et 
al. showed that the cementitious material prepared by activating fly ash with a strong alkaline 
solution has the advantages of high strength and low drying shrinkage, and compared with 
traditional Portland cement, it can reduce CO2 emissions by about 80% during the preparation 
process. Rezaei et al. poured alkali-activated fly ash/alumina silicate foamed concrete with a 
density between 600 and 1100 kg/m3. The experiment found that the compressive strength of the 
prepared foamed concrete was positively correlated with the density grade, and as the density 
grade decreased, the drying shrinkage rate of the foamed concrete also decreased. Shubham et al. 
studied the effects of gel material composition, silica modulus, alkali content and water-binder 
ratio on the physical stability, hydrolysis stability and mechanical stability of alkali-activated fly 
ash-slag foamed concrete, and gave the optimal ratio of the above parameters to obtain the 
maximum benefit. Zhou et al. partially replaced fly ash with ground blast furnace slag to synthesize 
a high-strength alkali-activated foamed concrete, and conducted compressive strength and thermal 
conductivity tests. The results showed that the prepared alkali-activated fly ash/slag foamed 
concrete not only has a considerable thermal conductivity, but also has excellent compressive 
strength, which provides a basis for its wide application in thermal insulation materials. At present, 
drying shrinkage and frost resistance, as important research contents of alkali-activated foamed 
concrete, have not been thoroughly studied at present. In this paper, alkali-activated foamed 
concrete was prepared by physical foaming with slag powder and fly ash as raw materials and 



 

 
 

water glass-NaOH aqueous solution as activator. The effects of different water-binder ratio, fly ash 
content and alkali equivalent on compressive strength, water absorption, drying shrinkage and frost 
resistance of foamed concrete were analyzed, which can provide help for promoting the application 
of alkali-activated foamed concrete in industry. 

It is not difficult to find from the above research that most researchers' research on the 
macroscopic properties of alkali-activated foamed concrete is mainly focused on density, 
mechanical properties (such as compressive strength, flexural strength, etc.), water absorption, 
thermal conductivity, etc. To date, few studies have comprehensively investigated the macroscopic 
properties and microstructure of alkali-activated fly ash–slag foamed concrete or established the 
correlations between them. Therefore, this study employs fly ash and slag as raw materials, using 
water glass and NaOH as alkaline activators, to produce alkali-activated fly ash–slag foamed 
concrete via a physical foaming method. Polypropylene fiber and hydrophobic agent dosages are 
used as experimental variables to optimize the initial mix, yielding a high-performance material. 
The study systematically examines the effects of polypropylene fibers and hydrophobic agents on 
the mechanical properties, thermal properties, water absorption, hydration products, and 
microstructure, with the aim of establishing correlations between the macroscopic properties and 
the microstructure. The resulting alkali-activated foamed concrete not only fully exploits the 
inherent reactivity of fly ash and slag, but also meets the production requirements in terms of 
mechanical performance, stability, thermal insulation, and water absorption. 

 
Figure 1. Composition of Alkali-Activated Fly Ash-Slag Foam Concrete 

Figure 2. Cured Specimens of Alkali-Activated Fly Ash-Slag Foamed Concrete 
1.2 Research objectives 

(1) The study investigates the effects of varying polypropylene fiber and hydrophobic agent 
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contents on the early-stage stability and hardened properties— such as mechanical strength, 
thermal performance, water absorption, drying shrinkage, and frost resistance of alkali-activated 
foamed concrete.  

(2) By adjusting the amounts of polypropylene fiber and hydrophobic agent, an optimized 
initial mix design for high-performance alkali-activated foamed concrete is developed. The 
resulting material not only effectively utilizes the inherent reactivity of raw materials like fly ash 
and slag but also meets the required standards for mechanical strength, stability, thermal insulation, 
and water resistance essential for practical applications. This optimization establishes a correlation 
between material composition, macroscopic properties, microstructure, and reaction products. 
 
2. Experimental data processing and analysis 
2.1 Design of Experiments 

In this study, an orthogonal design method was applied to establish nine experimental groups, 
with polypropylene fiber and hydrophobic agent contents as independent variables. The alkali-
activated foamed concrete was designed with a target dry density of 1100 kg/m³. A composite 
foaming agent was employed, and the mix proportion was designed with a water-to-binder ratio 
of 0.45, a silica modulus of the activator at 1.2, an alkali dosage (as Na₂O equivalent) of 4%, a 
superplasticizer dosage of 0.5%, and a binder proportion of 20% fly ash and 80% slag. For instance, 
AAFC-0.5-1% indicates a mix in which the hydrophobic agent content accounts for 0.5% of the 
binder mass, while the polypropylene fiber content is 1%. The detailed experimental design is 
presented in the following table. 

 
Table 1. Experimental Design for Alkali-Activated Fly Ash-Slag Foamed Concrete 

Group 

Hydrophobic 
Agent Content 
(% of Binder 

Mass) 

Polypropylene 
Fiber Content 
(% of Binder 

Mass) 

Water-to-
Binder Ratio 

Activator 
Modulus 

Alkali Dosage 
(Na₂O 

Equivalent, %) 

AAFC-0-1% 0 1% 0.4 1.2 4% 

AAFC-0.5-1% 0.5% 1% 0.4 1.2 4% 

AAFC-1-1% 1% 1% 0.4 1.2 4% 

AAFC-1.5-1% 1.5% 1% 0.4 1.2 4% 

AAFC-2-1% 2% 1% 0.4 1.2 4% 

AAFC-1.5-0% 1.5% 0% 0.4 1.2 4% 

AAFC-1.5-0.5% 1.5% 0.5% 0.4 1.2 4% 

AAFC-1.5-1.5% 1.5% 1.5% 0.4 1.2 4% 

AAFC-1.5-2% 1.5% 2% 0.4 1.2 4% 

 
2.2 Experimental Data Analysis (Compressive Strength) 



 

 
 

The figure presents the effect of different polypropylene fiber dosages on the compressive 
strength of alkali-activated fly ash-slag foamed concrete at 7 and 28 days. The results indicate that 
compressive strength initially increases with fiber content, reaching a peak of 7.68 MPa at 1% 
fiber dosage, before subsequently decreasing. These findings suggest that an appropriate amount 
of polypropylene fibers enhances matrix strength through mechanisms such as bridging 
microcracks, inhibiting crack propagation, and refining the pore structure. At lower dosages (≤1% 
of the binder mass), the uniform fiber distribution within the matrix improves interfacial transition 
zone bonding, facilitates stress transfer, and reduces porosity, thereby enhancing material density 
and compressive strength. However, when the fiber content exceeds 1.5%, the compressive 
strength decreases, likely due to fiber agglomeration, which disrupts the uniformity of the pore 
structure, increases porosity, and reduces matrix density. This effect results in localized stress 
concentrations, weakening the overall mechanical performance. Additionally, excessive fiber 
incorporation may interfere with the alkali activation process, reducing interfacial bonding 
strength and further impairing material performance. Therefore, a polypropylene fiber dosage of 
1% of the binder mass is optimal for this system, as it provides the best balance between fiber 
reinforcement and pore structure refinement, ensuring superior mechanical properties in alkali-
activated foamed concrete. 

Figure 3. Compressive Strength of Alkali-Activated Fly Ash-Slag Foamed Concrete 
 
3. Participate in an Academic Conference 

The International Mini-Symposium on Sustainable and Carbon-Neutral Structures and 
Materials, held at Kumamoto University, provided a high-level academic exchange platform for 
scholars worldwide to explore cutting-edge technologies in sustainable building materials and 
structural engineering. The symposium brought together renowned international experts to engage 
in in-depth discussions on key topics, including bio-based materials, bamboo structural 
engineering, sustainable composite materials, modular connection systems, reusable low-carbon 
building components, as well as numerical analysis and AI-driven modeling of reinforced concrete 
(RC) structures. These discussions encompassed several critical technological directions within 
the fields of civil and structural engineering. A distinctive feature of this symposium was the 
emphasis on multidisciplinary integration and the application of advanced technologies as 
essential drivers for sustainable building development. The presentations not only covered 
material-level innovations, such as structural optimization of bamboo-based components and the 



 

 
 

carbon-neutral development of bio-based construction materials, but also addressed structural 
system research, including sustainable steel-concrete composite flooring systems, reusable 
connection systems, and experimental and numerical studies on RC walls under cyclic loading. 
Moreover, the application of artificial intelligence and data-driven methods in seismic design and 
structural safety assessment emerged as one of the highlights of this symposium, offering novel 
insights into the optimization and performance prediction of future structural systems.This 
symposium clearly demonstrated that low-carbon, sustainable, and intelligent solutions are the 
prevailing trends in the future of civil and structural engineering. Experts at the event underscored 
that achieving global carbon neutrality requires greater emphasis on the development of innovative 
low-carbon materials, the optimization of efficient structural systems, the reduction of life-cycle 
carbon footprints in construction, and the integration of digital modeling with intelligent analytical 
tools. Throughout the discussions, scholars engaged in comprehensive dialogues that spanned 
theoretical analysis, experimental studies, and engineering practice, effectively showcasing the 
latest research advancements and technical challenges in the field.  

Attending this symposium has significantly broadened my understanding of sustainable 
building materials and structures, reinforcing the idea that future research should not only focus 
on enhancing the performance of individual materials or structures but also consider multiple 
factors such as environmental sustainability, resource efficiency, durability, and structural safety. 
The opportunity for academic exchange was invaluable, deepening my insights into the evolution 
of structural engineering within the carbon-neutral framework and inspiring new directions for 
future research. 

Figure 4. Participate in an Academic Conference 
 

3. Conducting experiments within Dr. Cai's research group 
During my participation in Dr. Cai's research team, I was involved in the preparatory work 

for the concrete wall loading test. My tasks included attaching strain gauges to collect strain data, 
marking measurement points and crack observation grids on the wall, and setting up displacement 
and load sensors. Additionally, I inspected the bonding quality of fiber-reinforced composite 
materials to ensure the effectiveness of reinforcement. Furthermore, I assisted in calibrating the 
loading equipment and checking the stability and safety of the experimental system to ensure the 
smooth execution of subsequent tests. 



 

 
 

Figure 5. Conducting experiments 
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During my internship at IROAST of Kumamoto University, I gained a lot and received valuable 
guidance from Professor Cai. I also had the opportunity to meet many outstanding students and 
staff, all of whom provided great support for my studies and daily life. During my time at 
Kumamoto University, I mainly accomplished two tasks that were deeply connected to the topic 
of “Using Machine Learning Algorithms to Solve Key Problems in the Field of Earthquake 
Resistance”. First, I completed the paper titled Quantitative Evaluation of the Relationship 
between Damage Evolution and Seismic Capacity of RC Columns: A Deep Learning-Based 
Perspective, which was supervised by Dr. Cai and worked with Mr. Wen (Cai lab member) before 
I came. Second, I utilized 3D reconstruction to assess the surface damage in concrete columns 
subjected to earthquake loads. I will now provide a detailed introduction to these two areas of work. 
 
1. The first project 
1.1 Background and data preparation 
The first part of my work involved completing the experiments and writing for a paper, which has 
already been submitted to the journal Advanced Engineering Informatics. At the beginning of my 
internship, I received experimental data from previous experiments conducted in the lab. In these 
experiments, a lateral offset angle was applied to concrete columns, and photos were taken at 
different offset angles. The raw image data from the experiment is shown in Figure 1. 

 



 

 
 

 
Figure1. Original image data 

With this data in hand, my goal was to use machine learning methods to assess the damage to the 
concrete columns. To achieve this, I employed deep-learning semantic segmentation algorithms to 
identify the cracks and spalling in the images. First, I constructed a dataset to train and optimize 
the model's parameters. I used Labelme annotation software for labeling, carefully outlining all 
the cracks in the images with polygons. This process had to be as detailed as possible because the 
more precise the annotations, the better the model's performance would be. After completing the 
crack annotations, I created a "crack" label and then proceeded to annotate the spalling areas, 
creating a "spalling" label after finishing. I repeated this process until all the photos, approximately 
200 images, were annotated. Once the annotations were complete, I split the data into training and 
testing sets, using 80% of the data for training and 20% for testing. At this point, the dataset was 
ready for use. 
 
1.2 Algorithm 
 
To address this problem, I proposed the KU-net architecture, which integrates both deep learning 
and machine learning components. The deep learning component focuses on extracting semantic 
segmentation information from the images, specifically identifying and delineating cracks and 
spalling areas. Once these defects are extracted, their characteristics, such as crack width and 
length and the area of spalling, are quantified. The machine learning component then correlates 
these quantified damage metrics with structural mechanics indicators, such as Degradation of 
Applied Force, Degradation of Stiffness, and the Equivalent Viscous Damping Coefficient, 
enabling a precise evaluation of the damage. This combined approach leverages the strengths of 
both deep learning for image analysis and machine learning for structural assessment to accurately 
determine the extent of damage to the concrete columns. 
 



 

 
 

 
Figure2. The overall architecture of the feature extractor network 

 
As shown in the figure, the model utilizes a PPM (Pyramid Pooling Module) combined with an 
FPN (Feature Pyramid Network) architecture to generate a more effective feature map. This feature 
map integrates multi-level semantic features. To further enhance this feature map, dynamic 
convolution is introduced. Dynamic convolution kernels automatically update the weight 
parameters of the convolutional sets based on the content of the images, allowing for better 
extraction of cracks and spalling. The semantic segmentation results are illustrated in Figure 3. 
After extracting the information related to cracks and spalling, this data is quantified. To correlate 
these quantified metrics with structural mechanics parameters, three machine learning 
algorithms—MLP (Multi-Layer Perceptron), XGBoost, and SVM (Support Vector Machine)—are 
employed to learn the mapping relationships. 
 
1.3 Experiment result 
 
The experimental results of the deep learning component are shown in Figure 4. To demonstrate 
the superiority of our proposed method, I compared it with three other semantic segmentation 
algorithms. The experimental results indicate that KU-net achieved the best performance among 
the compared methods. 
 

 
Figure 4. Comparison of mloU results with different algorithms 

 



 

 
 

The experimental results of the machine learning component are presented in Table 1. The SB-set 
and SBD-set represent the testing results on two different test datasets. The experiments show that 
the Mean Squared Error (MSE), which indicates the error between the predicted values and the 
ground truth, was the lowest for SVM. This indicates that SVM outperformed the other methods, 
and as a result, I chose to retain SVM as the algorithm for the machine learning component of KU-
net. 
 

Table 1. Comparison of the metrics of the machine learning module 

 
 
2. The second project 
2.1 Background and data preparation 
 
The second project during my internship aimed to more comprehensively assess the damage to 
concrete columns. In the previous project, I used photos taken from a single angle for evaluation, 
which was not sufficient for a complete analysis. Therefore, I explored the possibility of taking 
multiple photos of a concrete column from different angles, as shown in Figure 5. In the experiment, 
I captured photos from four different angles and used deep learning algorithms to reconstruct a 3D 
model of the column.  
 

 
Figure 5. The data of the experimental subjects captured from different angles is used for 3D 

reconstruction. 
 
Specifically, during the experiment, We prepared eight different concrete columns, including two 
NC (normal concrete) columns and six MRC (modified reinforced concrete) columns. In the 
experimental process, we first fixed the first concrete column and then applied horizontal push-
pull forces to it, causing it to tilt at a specific angle. This simulates the conditions during an 
earthquake. As the tilt angle increases, the damage to the concrete becomes more severe. At each 
different loading point, we took four photos of the concrete column from four angles. These four 
photos provide visual information from all angles of the concrete column, ensuring that no side is 
left unphotographed or obstructed. The images mentioned above are used for model training. 
Additionally, at each loading point, we recorded a video around the concrete column. The purpose 
of this is to simulate real-world scenarios: due to earthquake damage to buildings, people may not 

Algorithm MSE MAE MSE MAE
SVM 0.0075 0.0578 0.0333 0.1216
MLP 0.0078 0.0633 0.0378 0.1295

XGBoost 0.0090 0.0670 0.0419 0.1450

SB-set SBD-set



 

 
 

be able to approach the concrete columns inside the building to observe the damage, so a remote-
controlled drone can be used to record a video. Using this video, we can then employ the trained 
model to reconstruct a 3D model for more precise subsequent calculations. The data collection 
scene is shown in Figure 6. 
 

 
Figure 6. Data collection under the guidance of Professor Cai 

 
The reconstructed 3D image includes cracks and spalling information, allowing for a more detailed 
quantification of the damage to the concrete column. This necessitated building a deep learning 
network for 3D reconstruction. Using multi-angle photos for 3D reconstruction enables a more 
comprehensive evaluation of the damage and condition of the concrete columns. In the previous 
project, I did not perform camera calibration, which is essential because the inherent distortion in 
photos caused by the pinhole camera model could lead to inaccurate experimental data. Therefore, 
before collecting experimental data for this project, I used OpenCV to correct the original images, 
ensuring the accuracy of the results. Specifically, I first prepared the calibration board and 
completed the code, I ran the code to extract the camera's internal and external parameters, 
distortion coefficients, and other parameters. Then, I used the image correction method provided 
by OpenCV to correct the original distorted image. 
 
2.2 Experiment result 
 
In this project, I first developed a 3D reconstruction algorithm capable of creating a 3D model 
from an input image. Specifically, the 3D results generated by this model are explicit mesh 
representations rather than implicit probability representations, which facilitates more accurate 
damage calculation. The model utilizes Zero123 to generate multi-view images and then performs 
3D reconstruction using a signed distance function (SDF). This approach allows for better 
geometry, more consistent 3D results, and a closer adherence to the input images within a shorter 
time frame. Since the experiment with concrete columns has not been completed yet, I tested the 
network using pre-trained model parameters. The experimental results are shown in Figure 7. 

 
 



 

 
 

 
 

 
Figure 7. Experiment result of 3D reconstruction 

 
3. Other experiments 
 
For the previously completed crack extraction task, the analysis involved annotating several 
metrics from an image, including the damage area rate, concrete spalling area rate, hinge height, 
number of diagonal cracks, maximum transverse crack width and its coordinates, and the 
instantaneous failure model. I first input the images into the feature extraction network of our 
proposed KU-net to obtain a semantic segmentation map of cracks and spalling (as shown in Figure 
8).  
 

 
Figure 8. The semantic segmentation result 

 
When annotating key points, I first preprocessed the segmented images by setting the pixel values 
for cracks to 2, spalling to 1, and background information to 0. Then I performed morphological 
operations on the semantic images, specifically applying closing operations to eliminate small 
crack holes and gaps. For the maximum transverse crack, I first extracted pixels with values 1 and 
2, then calculated the contours for cracks and spalling separately. Each crack's information was 



 

 
 

stored in a list, and then each crack was analyzed to determine its type. If a crack's transverse 
length is greater than its longitudinal length, it is classified as a transverse crack. For the extracted 
transverse cracks, I calculated the area and coordinates and displayed the one with the largest area. 
For the damage area ratio analysis, My approach was to apply U-Net for semantic segmentation 
to segment only the concrete column and the annotated horizontal lines. After re-annotating the 
dataset, I trained the model. The trained model can precisely identify the horizontal lines and the 
entire concrete column in the input images. Based on the segmentation of these horizontal lines, I 
calculated the area of the concrete column at 250 mm and 125 mm. Then, using the segmentation 
maps for cracks and spalling, I computed the areas of cracks and spalling. By overlaying the results 
of the two semantic segmentation maps, I obtained the area ratios. The experimental results are 
shown in Figure 8. 
 

 
Figure 9. Analysis results of the damage area ratio 

 
4. Future plan  
 
After finishing this internship, I will participate in a six-month exchange program at Kumamoto 
University. I plan to complete the remaining experiments of Project 2 and write a new paper. Over 
the next six months, I also aim to complete the experiments and write two additional papers. In the 
longer term, I plan to pursue research at the intersection of machine learning and civil engineering, 
pursue a Ph.D., and stay in academia to continue my research. 
 
 
5. Outcomes 
 
Y. Wen, D. Yuan, G. Cai*. Quantitative Evaluation of the Relationship Between Damage Evolution 
and Seismic Capacity of RC Columns: A Deep Learning-Based Perspective Method. Advanced 
Engineering Informatics (IF:8.0, Submitted) 
 
 


