The aim of this research group is to investigate structure and dynamics of materials using quantum beam facilities in combination with data-driven sciences and computer simulations. Recent developments of quantum beam facilities, such as synchrotron radiation, x-ray free electron laser, and intense neutron sources, lead remarkable progresses in the quality of experimental data. In conjunction with them, new varieties of the data sets appear, such as two-dimensional images etc. and the corresponding data volumes explosively increase. The present task for researchers is how to extract scientifically valuable information from the experimental data of huge size in quantity but of still insufficient in quality. In this research unit, thus, we carry out state-of-art experiments such as scattering and imaging using quantum beam facilities, and analyze the data using, e.g., Inverse problem, Bayesian inference with Metropolis’ algorithm (reverse Monte Carlo modeling) and some others. Furthermore, the data-driven science such as Sparse modeling is a very promising tool for handling the data. To support the experimental results, first principles computer simulations are also indispensable.
Associate Professor
Faculty of Advanced Science and Technology, Kumamoto University
Professor
Institute of Industrial Nanomaterials, Kumamoto University
Scientific Advisor
HUN-REN Wigner Research Centre for Physics
*IROAST Distinguished Professor
Professor
Faculty of Advanced Science and Technology, Kumamoto University
Associate Professor
Faculty of Advanced Science and Technology, Kumamoto University
Researcher
Shimane University
1) S. Hosokawa, Y. Kawakita, L. Pusztai, K. Ikeda, and T. Otomo, Detailed investigations on short- and intermediate-range structures of Ge-Se glasses near the stiffness transition composition, Journal of Physical Society of Japan 90, 024601-1-12 (2021).
2) S. Hosokawa, J.-F. Berar, N. Boudet, W.-C. Pilgrim, L. Pusztai, S. Hiroi, S. Kohara, H. Kato, H. E. Fischer, and A. Zeidler, Detailed structural analysis of amorphous Pd40Cu40P20: Comparison with the metallic glass Pd40Ni40P20 from the viewpoint of glass forming ability, Journal of Non-Crystalline Solids 555, 120536-1-10 (2021).
3) H. Kumazoe, Y. Igarashi, F. Iesari, R. Shimizu, Y. Komatsu, T. Hitosugi, D. Matsumura, H. Saitoh, K. Iwamitsu, T. Okajima, Y. Seno, M. Okada, I. Akai, Bayesian sparse modeling of extended x-ray absorption fine structure to determine interstitial oxygen positions in yttrium oxyhydride epitaxial thin film, AIP Advances 11, 125013-1-5 (2021).
4) I. Sakata, T. Sakata, K. Mizoguchi, S. Tanaka, G. Oohata, I. Akai, Y. Igarashi, Y. Nagano, M. Okada, Complex energies of the coherent longitudinal optical phonon-plasmon coupled mode according to dynamic mode decomposition analysis. Scientific Reports volume 11, 23169-1-10 (2021).
5) H. Tanimoto, X. Hongkun, M. Mizumaki, Y. Seno, J. Uchiwada, R. Yamagami, H. Kumazoe, K. Iwamitsu, Y. Kimura, K. Amezawa, I. Akai, Non-negative matrix factorization for 2D-XAS images of lithium ion batteries, Journal of Physics Communications 5, 115005-1-16 (2021).
6) K. Iwamitsu, Y. Nishi, T. Yamasaki, M. Kamezaki, K. Higashiyama, S. Yakura, H. Kumazoe, S. Aihara, K. Nagata, M. Okada, I. Akai, Replica exchange Monte Carlo method incorporating auto-tuning algorithm based on acceptance ratios for effective Bayesian spectroscopy, Journal of the Physical Society of Japan 90, 104004-1-13 (2021).
7) Y. Yokoyama, N. Tsuji, I. Akai, K. Nagata, M. Okada, M. Mizumaki, Bayesian Orbital Decomposition and Determination of End Condition for Magnetic Compton Scattering, Journal of the Physical Society of Japan 90, 094802-1-6 (2021).
8) T. Yamasaki, K. Iwamitsu, H. Kumazoe, M. Okada, M. Mizumaki, I. Akai, Bayesian spectroscopy of synthesized soft X-ray absorption spectra showing magnetic circular dichroism at the Ni-L3, -L2 edges, Science and Technology of Advanced Materials: Method 1, 75-86 (2021).
9) LVD Gammond, H Auer, R Mendes Da Silva, A Zeidler, JF Ortiz-Mosquera, AM Nieto-Munoz, ACM Rodrigues, IAA Silva, H Eckert, CJ Benmore, and PS Salmon, Structure of crystalline and amorphous materials in the NASICON system Na1+xAlxGe2?x(PO4)3, The Journal of Chemical Physics 155 (7), 074501 (2021).
10) A Polidori, RF Rowlands, A Zeidler, M Salanne, HE Fischer, B Annighofer, S Klotz, and PS Salmon, Structure and dynamics of aqueous NaCl solutions at high temperatures and pressures, The Journal of Chemical Physics 155 (19), 194506 (2021).
11) LVD Gammond, RE Youngman, A Zeidler, BG Aitken, PS Salmon, Structural model for amorphous aluminosilicates, The Journal of Chemical Physics 156 (6), 064503 (2022).
12) S. Pothoczki, I. Pethes, L. Pusztai, L. Temleitner, K. Ohara, and I Bako, Properties of Hydrogen-Bonded Networks in Ethanol?Water Liquid Mixtures as a Function of Temperature: Diffraction Experiments and Computer Simulations; The Journal of Physical Chemistry B; 125, 6272-6279 (2021).
13) I. Pethes, L. Pusztai, K. Ohara, and L. Temleitner, Temperature-dependent structure of 1-propanol/water mixtures: X-ray diffraction experiments and computer simulations at low and high alcohol contents, Journal of Molecular Liquids 340, 117188 (2021).
14) I. Bako, D. Csokas, I. Mayer, S. Pothoczki, and L. Pusztai, The influence of cations on the dipole moments of neighboring polar molecules; International Journal of Quantum Chemistry 122, e26758-1-12 (2021).
15) L. Temleitner, L. Pusztai, G. Cuello, and A. Stunault, Structural studies of 1H-containing liquids by polarized neutrons: Chemical environment and wavelength dependence of the incoherent background, Journal of Molecular Liquids 350, 118535 (2022).
16) Masaru Aniya, Haruhito Sadakuni, and Eita Hirano, Ionic Conductors: Effect of Temperature on Conductivity and Mechanical Properties and Their Interrelations, Crystals 11, 1008-1022 (2021).
17) Masahiro Ikeda and Masaru Aniya, Predicting the Temperature Range of Arrhenius Crossover of Structural Relaxation in Fragile Glass-forming Liquids, Glass Physics and Chemistry 47, 427-430 (2021).
18) Kazuma Hagihara and Masaru Aniya, A Model for the Particle Size Dependence of the Ionic Conductivity, AIP Conference Proceedings 2440, 030002-1-6 (2022).
19) Kazuho Murata and Masaru Aniya, Particle Size and Dimensionality Dependence of the Gruneisen Parameter, AIP Conference Proceedings 2440, 030004-1-5 (2022).
20) Masaru Aniya and Takesi Usuki, Ion Conducting Chalcogenide Glasses, Solid State Physics 57, 21-33 (2022). (in Japanese).
21) K. Oka, S. Tateno, Y. Kuwayama, K. Hirose, Y. Nakajima, K. Umemoto, N. Tsujino, and S. I. Kawaguchi, A cotunnite-type new high-pressure phase of Fe2S, American Mineralogists, (in press)
22) L. Temleitner, T. Hattori, J. Abe, Y. Nakajima, and L. Pusztai, Pressure-Dependent Structure of Methanol-Water Mixtures up to 1.2 GPa: Neutron Diffraction Experiments and Molecular Dynamics Simulations, Molecules, 26, 1218 (2021).
23) E. S. Jennings, S. A. Jacobson, D. C. Rubie, Y. Nakajima, A. K. Vogel, L. A. Rose-Weston, and D. J. Frost, Metal-silicate partitioning of W and Mo and the role of carbon in controlling their abundances in the bulk silicate earth, Geochimica et Cosmochimica Acta 293, 40-69 (2021).
24) B. Paulus, J. R. Stellhorn, S. Hosokawa, B. D. Klee, Y. Sutou, and W.-C. Pilgrim, Short-Range Order Investigation of CuxGe50-xTe50 Phase-Change Materials, Physica Status Solidi B 2100619 (2022). (in press)
25) M. Inui, Y. Kajihara, S. Hosokawa, A. Chiba, Y. Nakajima, K. Matsuda, J. R. Stellhorn, T. Hagiya, D. Ishikawa, H. Uchiyama, S. Tsutsui, and A. Q. R. Baron, Low energy excitation in liquid Sb and liquid Bi observed in inelastic x-ray scattering spectra, Journal of Physics: Condensed Matter 33, 475101-1-8 (2021).
26) K. Hayashi, N. Happo, and S. Hosokawa, A cryostat designed for x-ray fluorescence holography experiments down to 4 K, Review of Scientific Instruments 92, 083703-1-7 (2021).
27) M. Inui, Y. Kajihara, S. Hosokawa, A. Chiba, Y. Nakajima, K. Matsuda, Y. Tsuchiya, J. R. Stellhorn, T. Hagiya, H. Uchiyama, S. Tsutsui, and A. Q. R. Baron, Longitudinal acoustic and higher energy excitations in liquid phase change material Ge2Sb2Te5, Physical Review B 104, 064202-1-8 (2021).
28) F. Demmel. S. Hosokawa, and W.-C. Pilgrim, Collective particle dynamics of molten NaCl by inelastic x-ray scattering, Journal of Physics: Condensed Matter 33, 375103-1-12 (2021).
29) N. Happo, K. Hayashi, T. Matsushita, and S. Hosokawa, Local structure analysis on yttria-stabilized zirconia by x-ray fluorescence holography, e-Journal of Surface Science and Nanotechnology 20, 51-57 (2022).
30) S. Hosokawa, N. Happo, K. Hayashi, T. Matsushita, and A. Yamashita, Three-dimensional atomic image of FeSe high-temperature superconductor by x-ray fluorescence holography, e-Journal of Surface Science and Nanotechnology 20, 36-41 (2022).
31) S. Hosokawa, Progress of structural analysis on amorphous materials by quantum beams, Solid State Physics 57, 35-44 (2022). (in Japanese)
Conference Proceedings
1) S. Hosokawa, Y. Kawakita, J. R. Stellhorn, L. Pusztai, N. Blanc, N. Boudet, K. Ikeda, and T. Otomo, Local- and Intermediate-Range Order in Room Temperature Superionic Conducting Ag-GeSe3 Glasses, JPS Conference Proceedings 33, 011069-1-6 (2021).
2) S. Hosokawa, J. R. Stellhorn, Y. Onodera, S. Kohara, H. Tajiri, E. Magome, L. Pusztai, K. Ikeda, T. Otomo, M. Krbal, and T. Wagner, Local- and Intermediate-Range Atomic Order in Ga2Ge3Se9 Glass: Complementary Use of X-Rays and Neutrons, JPS Conference Proceedings 33, 011069-1-6 (2021).