Multicellular organisms require precise coordination of cell division and differentiation to ensure organized development. Plants have evolved a unique structure called the meristem, which consists of a pool of stem cells that divide and renew themselves continuously. The shoot apical meristem, which is formed during embryogenesis, plays a central role in generating postembryonic shoot organs such as leaves, stems and flowers. Focusing on key regulatory genes, we study how the shoot apical meristem is formed and maintained during the plant life cycle, and how the activities of these regulatory genes affect tissue morphology and behaviors.
On the other hand, plants sometimes produce gall-like structures induced by a number of other organisms, such as the root nodules induced by Rhizobium, and the galls induced by plant parasitic nematodes or insects. Parasites and symbiotes induce different types of plant responses, and sometimes they hijack the plant’s endogenous signaling pathways for their own purposes. For example, plant parasitic nematodes utilize root formation-related signaling pathways to induce cell division and form gall from pre-vascular cells to survive in plant roots. Furthermore, cell wall compositions are often modified in response to such developmental reprogramming during these biotic interactions.
In this Research Unit, Plant Cell and Developmental Biology, we characterize the molecular and physical mechanisms that contribute to plant development and plant–parasitic nematodes interactions using genetic, biochemical, physiological approaches. From a technical point of view, image analyses can be quite useful to mine valuable information from high-dimensional microscopic images. As such, we are also currently developing original image analysis tools tailored for experimental plant cell and developmental biologists.
Professor
Faculty of Advanced Science and Technology, Kumamoto University
Professor
Department of Environmental Sciences, School of Environmental Sciences and Biochemistry, University of Castilla La Mancha
Professor
Faculty of Advanced Science and Technology (FAST), Kumamoto University
Professor
Faculty of Advanced Science and Technology (FAST), Kumamoto University
Project Assistant Professor
Faculty of Advanced Science and Technology, Kumamoto University
Environmental Control Center Co.,Ltd.
*Visiting Assistant Professor, Kumamoto University
Yanagawa, Y., Ratna, N. P., Krishanti, A., Sugiyama, A., Chrysanti, E., Komara, S., Kubo, M., Furumizu, C., Sawa, S., Dara, S. K., and Kobayashi M. (2021) Control of Fusarium and nematodes by entomopathogenic fungi for organic production of Zingiber officinale. Journal of Natural Medicines. 76. 291-297.
Suzuki, R., Yamada, M., Higaki, T., Aida, M., Kubo, M., Tsai, A.Y-L., Sawa, S. (2021) PUCHI regulates giant cell morphology formation during root-knot nematode infection in Arabidopsis thaliana. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2021.755610
Tsai, A, Y-L., McGee, R., Dean, G.H., Haughn, G. W., Sawa, S. (2021) Seed Mucilage: Biological Functions and Potential Applications in Biotechnology. Plant Cell Physiol. 62. 1847-1857.
Tsai, A, Y-L., Iwamoto, Y., Tsumuraya, Y., Oota, M., Konishi, T., Ito, S., Kotake, T., Ishikawa, H., and Sawa, S. (2021) Root-knot nematode chemotaxis is positively regulated by L-galactose sidechains of mucilage carbohydrate rhamnogalacturonan-I. Science Advances, 7, eabh4182, DOI: 10.1126/sciadv.abh4182
Furumizu, C., Krabberød, A. K., Hammerstad, M., Alling, R. M., Wildhagen, M., Sawa, S.*, and Aalen, R. B. (2021). The sequenced genomes of non-flowering land plants reveal the (R)evolutionary history of peptide signaling. Plant Cell. In Press. *Contact person.
Furumizu, C., and Sawa, S. (2021) The RGF/GLV/CLEL Family of Short Peptides Evolved Through Lineage-Specific Losses and Diversification and Yet Conserves Its Signaling Role Between Vascular Plants and Bryophytes. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2021.703012
Terada, S., Kubo, M., Akiyoshi, N., Sano, R., Nomura, T., Sawa, S., Ohtani, M., and Demura, T. (2021) Expression of Peat Moss VASCULAR RELATED NAC-DOMAIN Homologs in Nicotiana benthamiana Leaf Cells Induces Ectopic Secondary Wall Formation. Plant Mol. Biol. 106. 309-317.
Suzuki, R., Ueda, T., Wada, T., Ito, M., and Sawa, S. (2021) Identification of genes involved in Meloidogyne incognita-induced gall formation processes in Arabidopsis thaliana. Plant Biotech. 38. 1-8.
Ishida,T., Yoshimura, H., Takekawa, M., Higaki, T., Ideue T., Hatano, M,. Igarashi M., Tani, T., Sawa, S., and Ishikawa, H. (2021) Discovery, characterization and functional improvement of kumamonamide as a novel plant growth inhibitor that disturbs plant microtubules. Sci. Rep. 11. 6077.
Yuan, N., Furumizu, C., Zhang, B., and Sawa, S. (2021) Database mining of plant peptide homologues. Plant Biotech. 38. 137-143.
Toyoda, S., Oota, M., Ishiakwa, H., and Sawa, S. (2021) Calcium sulfate and calcium carbonate as root-knot-nematode attractants and possible trap materials to protect crop plants. Plant Biotech. 38. 157-159.
Truong NM, Chen Y, Mejias J, Soulé S, Mulet K, Jaouannet M, Jaubert-Possamai S, Sawa S, Abad P, Favery B, Quentin M. (2021) The Meloidogyne incognita Nuclear Effector MiEFF1 Interacts With ArabidopsisCytosolic Glyceraldehyde-3-Phosphate Dehydrogenases to Promote Parasitism. Frontiers in Plant Sci.12: 641480. doi: 10.3389/fpls.2021.641480
Fukunaga, H., Kitada, Y., Kawamura, N., and Sawa, S. (2021) A new form of the mycoheterotrophic plant Lecanorchis nigricans var. patipetala (Orchidaceae) from Tokyo, Japan. Orchid Digest. 85: 48-50.
Mejias, J., bazin, J., Truong, N-M., Chen, Y., Marteu, N., Bouteiller, N., Sawa, S., Crespi, M. D., Vaucheret, H., Abad, P., Favery, B., and Quentin, M. (2021) The Root-Knot Nematode Effector MiEFF18 interacts with the Plant Core Spliceosomal Protein SmD1 Required for Giant Cell Formation. New Phytol. 229. 3408-3423.
Yamada M, Tanaka S, Miyazaki T, Aida M. Expression of the auxin biosynthetic genes YUCCA1 and YUCCA4 is dependent on the boundary regulators CUP-SHAPED COTYLEDON genes in the Arabidopsis thaliana embryo. Plant Biotechnol 39, 37-42, doi: 10.5511/plantbiotechnology.21.0924a.
Ikeda Y, Králová M, Zalabák D, Kubalová I, Aida M (2021). Post-embryonic lateral organ development and adaxial–abaxial polarity are regulated by the combined effect of ENHANCER OF SHOOT REGENERATION 1 and WUSCHEL in Arabidopsis shoots. Int. J. Mol Sci 22, 10621. doi: 10.3390/ijms221910621
Takahama A, Aida M. Visualization and quantification of cortical microtubules in the apical region of the Arabidopsis thaliana embryo (2021). Cytologia 86, 181-182. doi: 10.1508/cytologia.86.181
Fujihara R, Uchida N, Tameshige T, Kawamoto N, Hotokezaka Y, Higaki T, Simon R, Torii KU, Tasaka M, Aida M (2021). The boundary-expressed EPIDERMAL PATTERNING FACTOR-LIKE2 gene encoding a signaling peptide promotes cotyledon growth during Arabidopsis thaliana embryogenesis. Plant Biotechnol 38, 317-322. doi: 10.5511/plantbiotechnology.21.0508a
Kunita, I., Morita, M. T., Toda, M., & Higaki, T. (2021). A three-dimensional scanning system for digital archiving and quantitative evaluation of Arabidopsis plant architectures. Plant Cell Physiol. 62. 1975-1982.
Matsumoto, H., Kimata, Y., Higaki, T., Higashiyama, T., & Ueda, M. (2021). Dynamic rearrangement and directional migration of tubular vacuoles are required for the asymmetric division of the Arabidopsis zygote. Plant Cell Physiol. 62. 1280-1289.
Sato, F., Iba, K., & Higaki, T. (2021) Involvement of the membrane trafficking factor PATROL1 in the salinity stress tolerance of Arabidopsis thaliana. Cytologia 86. 119-126.
Kimura, T., Haga, K., Nomura, Y., Higaki, T., Nakagami, H., & Sakai, T. (2021). The phosphorylation status of NPH3 affects photosensory adaptation during the phototropic response. Plant Physiol. 187. 981-995.
Kamon, E., Noda, C., Higaki, T., Demura, T., & Ohtani, M. (2021). Calcium signaling contributes to xylem vessel cell differentiation via post-transcriptional regulation of VND7 downstream events. Plant Biotech. 21-0519.
Kikukawa, K., Yoshimura, K., Watanabe, A., & Higaki, T. (2021). Metal-nano-ink coating for monitoring and quantification of cotyledon epidermal cell morphogenesis. Frontiers in Plant Science. 2169.
Okubo-Kurihara, E., Ali, A., Hiramoto, M., Kurihara, Y., Abouleila, Y., Abdelazem, E. M., Kawai, T., Makita, Y., Kawashima, M., Esaki, T., Shimada, H., Mori, T., Hirai, M.Y., Higaki, T., Hasezawa, S., Shimizu, Y., Masujima, T. & Matsui, M. (2022). Tracking metabolites at single-cell resolution reveals metabolic dynamics during plant mitosis. Plant Physiol. in press.
Sakai, Y., Higaki, T., Ishizaki, K., Nishihama, R., Kohchi, T., & Hasezawa, S. (2022). Migration of prospindle before the first asymmetric division in germinating spore of Marchantia polymorpha. Plant Biotech. 39. 5-12.
Proveda, J., Abril-Urias, P., Escobar, C. (2020) Biological Control of Plant-Parasitic Nematodes by Filamentous Fungi Inducers of Resistance: Trichoderma, Mycorrhizal and Endophytic Fungi. Frontiers in Microbiology. 11. doi: 10.3389/fmicb.2020.00992
Silva, A. C., Ruiz-Ferrer V., Martinez-Gomez, A., Barcala, M. Fenoll, C., and Escobar, C. (2019) All in One High Quality Genomic DNA and Total RNA Extraction From Nematode Induced Galls for High Throughput Sequencing Purposes. Frintiers in Plant Science. 10. doi: 10.3389/fpls.2019.00657
Aida M, Tsubakimoto Y, Shimizu S, Ogisu H, Kamiya M, Iwamoto R, Takeda S, Karim MR, Mizutani M, Lenhard M, Tasaka M. (2020) Establishment of the embryonic shoot meristem involves activation of two classes of genes with opposing functions for meristem activities. Int J Mol Sci 21, 5864. doi: 10.3390/ijms21165864
Yokoi A, Aida M. Postgenital fusion and epidermal cell fate control during gynoecium development (2021). Cytologia, in press.
Yamamoto K, Tasaka M, Aida M. (2021) Genetic interactions between the CUP-SHAPED COTYLEDON and the BELLRINGER genes indicate their overlapping functions in carpel boundary development in Arabidopsis thaliana. Plant Morphol, in press.
Maeda K, Higaki T (2021) Disruption of actin filaments delays accumulation of cell plate membranes after chromosome separation. Plant Sig Behav 16: 1873586.
Higaki T, Akita K, Katoh K (2020) Coefficient of variation as an image-intensity metric for cytoskeleton bundling. Sci Rep 10: 22187.
Lu YJ, Li P, Shimono M, Corrion A, Higaki T, He SY, Day B (2020) Arabidopsis calcium-dependent protein kinase 3 regulates actin cytoskeleton organization and immunity. Nat Commun 11:6234.
Kimata Y, Higaki T, Kurihara D, Ando N, Matsumoto H, Higashiyama T, Ueda M (2020) Mitochondrial dynamics and segregation during the asymmetric division of Arabidopsis zygotes. Quant Plant Biol 1: e3.
Higaki T, Mizuno H (2020) Four-dimensional imaging with virtual reality to quantitatively explore jigsaw puzzle-like morphogenesis of Arabidopsis cotyledon pavement cells. Plant Biotech 37: 429-435.
Yoshimi Y, Hara K, Yoshimura M, Tanaka N, Higaki T, Tsumuraya Y, Kotake T (2020) Expresion of a fungal exo-β-1,3-galactanase in Arabidopsis reveals a role of type II arabinogalactans in the regulation of cell shape. J Exp Bot 71: 5414-5424.
Higaki T, Akita K, Hasezawa S (2020) Elevated CO2 promotes satellite stomata production in young cotyledons of Arabidopsis thaliana. Genes Cells 25: 475-482.
Ishida,T., Yoshimura, H., Takekawa, M., Higaki, T., Ideue T., Hatano, M,. Igarashi M., Tani, T., Sawa, S., and Ishikawa, H. (2021) Discovery, characterization and functional improvement of kumamonamide as a novel plant growth inhibitor that disturbs plant microtubules. Sci. Rep. In Press.
Yuan, N., Furumizu, C., Zhang, B., and Sawa, S. (2021) Database mining of plant peptide homologues. Plant Biotech. In Press.
Toyoda, S., Oota, M., Ishiakwa, H., and Sawa, S. (2020) Calcium sulfate and calcium carbonate as root-knot-nematode attractants and possible trap materials to protect crop plants. Plant Biotech. In Press.
Imoto, A., Yamada, M., Sakamoto, T., Okuyama, A., Ishida, T., Sawa, S., and Aida, M. (2021) A ClearSee-based clearing protocol for 3D visualization of Arabidopsis tahaliana embryos. Plants. 10, 190; https://doi.org/10.3390/plants10020190
Asaoka, M,. Ooe, M., Gunji, S., Milani, P., Runel, G., Horiguchi, G., Hamant, O., Sawa, S., Tsukaya, H., and Ferjani, A. (2021) Stem integrity in Arabidopsis thaliana requires a load-bearing epidermis. Development, 148, dev198028. doi:10.1242/dev.198028
岡本竜弥、相田光宏、石川勇人、澤進一郎 (2020) 熊本におけるアイラトビカズラ(マメ科)のDNAシーケンスによる種同定, Botany, 70, 8-10.
Fukunaga, H., Kitada, Y., Kawamura, N., and Sawa, S. (2021) A new form of the mycoheterotrophic plant Lecanorchis nigricans var. patipetala (Orchidaceae) from Tokyo, Japan. Orchid Digest. 85: 48-50.
Mejias, J., bazin, J., Truong, N-M., Chen, Y., Marteu, N., Bouteiller, N., Sawa, S., Crespi, M. D., Vaucheret, H., Abad, P., Favery, B., and Quentin, M. (2021) The Root-Knot Nematode Effector MiEFF18 interacts with the Plant Core Spliceosomal Protein SmD1 Required for Giant Cell Formation. New Phytol. 229. 3408-3423. https://doi.org/10.1111/nph.17089
Suetsugu K., Kaida, S., Fukunaga, H., and Sawa, S. (2020). A New Form of the Mycoheterotrophic Plant Lecanorchis japonica (Orchidaceae) from Japan. 71, 243-248. doi: 10.18942/apg.201924
Sawa, S., Sato, M. H., and Favery, B. (2020). Developmental Modification under Biotic Interactions in Plants. Frontiers in Plant Science. doi: 10.3389/fpls.2020.619804
Furumizu, C., and Sawa, S. (2021) Insight into early diversification of leucine-rich repeat receptor-like kinases provided by the sequenced moss and hornwort genomes. Plant Mol. Biol. https://doi.org/10.1007/s11103-020-01100-0
肥田 博隆 江原 りか 神野 伊策 古水 千尋 澤 進一郎 (2020) 機械的ストレスが植物寄生性線虫の感染に与える影響の解析 電気学会総合研究会 BMS-20-20.
Nakai, R., Azuma, T., Nakaso, Y., Sawa, S., and Demura, T. (2020) Development of a dynamic imaging method for gravitropism in pea sprouts using clinical magnetic resonance imaging system. Plant Biotech. 37. 437-442.
Yoshida, Y., Arita, T,. Otani, J., and Sawa, S. (2020) Visualization of Toyoura sand-grown plant roots by X-ray computer tomography. Plant Biotech. 37. 481-484.
岡本竜弥、相田光宏、石川勇人、澤進一郎 (2020) 熊本におけるアイラトビカズラ(マメ科)のDNAシーケンスによる種同定, Botany, 70, 8-10.
Hirakawa, Y., Fujimoto, T., Ishida, S., Uchida, N., Sawa, S., Kiyosue, T., Ishizaki, K., Nishihama, R., Kohchi, T., and Bowman, J.L., (2020). Induction of multichotomous branching by CLAVATA peptide in Marchantia polymorpha. Curr. Biol. 30, 3833-3840.
佐古隆太朗,澤進一郎,古水千尋,神野伊策,肥田博隆 (2020) ポアメンブレンを用いた植物寄生性線虫の化学走性分析デバイス.第37回センサ・マイクロマシンと応用システム(センサ・マイクロマシン部門大会)2020年10月26-28日、熊本
Tsai, A, Y-L., Oota, M., and Sawa, S. (2020) Chemotactic host-finding strategies of plant endoparasites and endophytes. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.01167
Suzuki, R., Ueda, T., Wada, T., Ito, M., and Sawa, S. (2020) Identification of genes involved in Meloidogyne incognita-induced gall formation processes in Arabidopsis thaliana. Plant Biotech. In Press.
Nakagami, S., Saeki, K., Toda, K., Ishida, T., and Sawa, S. (2020) The atypical E2F transcription factor DEL1 modulates growth–defense tradeoffs of host plants during root-knot nematode infection. Scientific Rep. 10. 8836. DOI:10.1038/s41598-020-65733-3
Shinichiro Sawa
Principal Investigator
Co-PI
Mitsuhiro Aida
Principal Investigator
Takumi Higaki
Principal Investigator
Co-PI
Mitsuhiro Aida, Grant-in-Aid for Scientific Research on Innovative Areas (The Japan Society for the Promotion of Science), Principles of pluripotent stem cells underlying plant vitality, Establishment of plant hormone microenvironment during shoot stem cell formation, April 2020-March 2022.
Takumi Higaki, Grant-in-Aid for Scientific Research (B) (The Japan Society for the Promotion of Science), "Multi-dimensional bioimage analyses with machine learning to reveal the dynamics of membrane vesicles and microtubules in stomatal guard cells," April 2020-March 2023.
Takumi Higaki, Grant-in-Aid for Scientific Research on Innovative Areas (The Japan Society for the Promotion of Science), Elucidation of the strategies of mechanical optimization in plants toward the establishment of the bases for sustainable structure system, "Imaging analysis on cell geometry during mechanical optimization in leaves," June 2018-March 2023.
Takumi Higaki, Grant-in-Aid for Scientific Research on Innovative Areas (The Japan Society for the Promotion of Science), Platforms for Advanced Technologies and Research Resources "Advanced Bioimaging Support," "Consultation and technical support for bioimage analysis," April 2018-March 2022.
Shinichiro Sawa, Grant-in-Aid for Scientific Research on Innovative Areas (The Japan Society for the Promotion of Science), Elucidation of the strategies of mechanical optimization in plants toward the establishment of the bases for sustainable structure system, June 2018-March 2023.
Shinichiro Sawa, Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area), April 2018-March 2023.
Shinichiro Sawa, Grant-in-Aid for Scientific Research on Innovative Arias (A), April 2020-March 2025.
Shinichiro Sawa, Grant-in-Aid for Fostering Joint International Research(B), October 2020-March 2024.
Application & acquisition status of industrial property rights
整理番号:20028AA08(日本)
出願番号:特願2021-024793
出願日: 令和3年2月19日(2021/02/19)
発明の名称: 植物寄生性センチュウ防除剤 (線虫抵抗性に関わる遺伝子およびその利用)
出願人: 国立大学法人 熊本大学
発明者: 澤進一郎; 春原英彦; 佐藤 豊; 土川一行
・Patent application number; 2021-024793
Title of invention; Plant parasitic nematode control agent.
Application day; 2013/2/29
Patent applicant; Kumamoto University
Inventors; Shinichiro Sawa, Hidehiko Sunohara, Yutaka Sato, and Kazuyuki Doi.